A High Precision Parallel Principal Skewness Analysis Algorithm and Its Application to Remote Sensing Images

被引:0
作者
Wang, Dahu [1 ,2 ]
Liu, Chang [1 ,2 ]
Wang, Jian [1 ,2 ]
Yao, Kai [1 ,2 ]
Zhang, Zhen [3 ]
机构
[1] Chinese Acad Sci, Inst Space Informat Innovat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing, Peoples R China
[3] Chinese Peoples Liberat Army Aviat Sch, Beijing 101123, Peoples R China
关键词
Image separation; Image denoising; Principal Skewness Analysis (PSA); High precision; Parallel; Feature extraction; TENSOR DECOMPOSITIONS;
D O I
10.11999/JEIT220960
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Principal Skewness Analysis (PSA), as a third-order extension of Principal Component Analysis (PCA), is often used for blind image separation, SAR image denoising, and hyperspectral feature extraction. However, the existing PSA algorithm can only obtain approximate solutions, which will affect the accuracy of subsequent image processing. In view of this problem, a high-precision Parallel Principal Skewness Analysis (PPSA) algorithm based on the existing PSA algorithm is proposed. The PPSA algorithm considers fully the data structure, and selects the eigenvectors of all slices of the co-skewness tensor as the initial value of the iteration, which can accurately obtain the actual solution. Simulation experiments and actual remote sensing image experiments verify the effectiveness and superiority of the PSA algorithm.
引用
收藏
页码:S492 / S501
页数:10
相关论文
共 18 条
[1]  
Anandkumar A, 2014, J MACH LEARN RES, V15, P2773
[2]   Remote Sensing Scene Classification via Multi-Branch Local Attention Network [J].
Chen, Si-Bao ;
Wei, Qing-Song ;
Wang, Wen-Zhong ;
Tang, Jin ;
Luo, Bin ;
Wang, Zu-Yuan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 :99-109
[3]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[4]   Satellite Image Compression and Denoising With Neural Networks [J].
de Oliveira, Vinicius Alves ;
Chabert, Marie ;
Oberlin, Thomas ;
Poulliat, Charly ;
Bruno, Mickael ;
Latry, Christophe ;
Carlavan, Mikael ;
Henrot, Simon ;
Falzon, Frederic ;
Camarero, Roberto .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[5]  
FENG Xiaoling, 2022, 2022 2 INT C CONS EL, P271, DOI [10.1109/iccece54139.2022.9712836, DOI 10.1109/ICCECE54139.2022.9712836]
[6]   NPSA: Nonorthogonal Principal Skewness Analysis [J].
Geng, Xiurui ;
Wang, Lei .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :6396-6408
[7]   Momentum Principal Skewness Analysis [J].
Geng, Xiurui ;
Meng, Lingbo ;
Li, Lin ;
Ji, Luyan ;
Sun, Kang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (11) :2262-2266
[8]   Optimizing the Endmembers Using Volume Invariant Constrained Model [J].
Geng, Xiurui ;
Sun, Kang ;
Ji, Luyan ;
Zhao, Yongchao ;
Tang, Hairong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) :3441-3449
[9]   Principal Skewness Analysis: Algorithm and Its Application for Multispectral/Hyperspectral Images Indexing [J].
Geng, Xiurui ;
Ji, Luyan ;
Sun, Kang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (10) :1821-1825
[10]   Analysis of a complex of statistical variables into principal components [J].
Hotelling, H .
JOURNAL OF EDUCATIONAL PSYCHOLOGY, 1933, 24 :417-441