Stationary states and instabilities of a Möbius fiber resonator

被引:2
|
作者
Maitland C. [1 ,2 ]
Conforti M. [3 ]
Mussot A. [3 ,4 ]
Biancalana F. [1 ]
机构
[1] Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh
[2] School of Physics and Astronomy, University of Glasgow, Glasgow
[3] Université Lille, CNRS, UMR 8523, PhLAM-Physique des Lasers Atomes et Molecules, Lille
[4] Institut Universitaire de France (IUF), 1 rue Descartes, Paris Cedex 05
来源
Physical Review Research | 2020年 / 2卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Resonators;
D O I
10.1103/PhysRevResearch.2.043195
中图分类号
TB51 [声学仪器];
学科分类号
0804 ;
摘要
We examine the steady state and dynamic behavior of an optical resonator comprised of two interlinked fiber loops sharing a common pump. A coupled Ikeda map models with great accuracy the field evolution within and exchange between both fibers over a single round trip. We find this supports a range of rich multidimensional bistability in the continuous wave regime, as well as previously unseen cavity soliton states. Floquet analysis reveals that modulation and parametric instabilities occur over wider domains than in single-fiber resonators, which can be tailored by controlling the relative dispersion and resonance frequencies of the two fiber loops. Parametric instability gives birth to a train of pulses with a peculiar period-doubling behavior. © 2020 authors.
引用
收藏
相关论文
共 50 条
  • [1] Topological resonances in a Möbius ring resonator
    Yao Chen
    Jiankun Hou
    Guolin Zhao
    Xianfeng Chen
    Wenjie Wan
    Communications Physics, 6
  • [2] Strong stationary duality for Möbius monotone Markov chains
    Paweł Lorek
    Ryszard Szekli
    Queueing Systems, 2012, 71 : 79 - 95
  • [3] Electronic states in quantum wires on a Möbius strip
    Pinto, J. J. L. R.
    Silva, J. E. G.
    Almeida, C. A. S.
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [4] Disjointness of the Möbius Transformation and Möbius Function
    El Houcein El Abdalaoui
    Igor E. Shparlinski
    Research in the Mathematical Sciences, 2019, 6
  • [5] On Mbius Form and Mbius Isoparametric Hypersurfaces
    Ze Jun HUDepartment of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2009, 25 (12) : 2077 - 2092
  • [6] On Möbius form and Möbius isoparametric hypersurfaces
    Ze Jun Hu
    Xiao Li Tian
    Acta Mathematica Sinica, English Series, 2009, 25 : 2077 - 2092
  • [7] Möbius
    J. W. Alden
    Nature, 2014, 515 : 304 - 304
  • [8] Möbius Flowers
    Akiyama, Jin
    Matsunaga, Kiyoko
    Nakajima, Sachiko
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (04): : 1081 - 1098
  • [9] The Möbius matroids
    Pivotto, Irene
    Royle, Gordon
    Advances in Applied Mathematics, 2021, 126
  • [10] A Combinatorial Method to Introduce Mbius Inversion Formula and Mbius Function
    陈难先
    Chinese Science Bulletin, 1993, (01) : 27 - 31