Experimental Comparison and Numerical Simulation of Surface Crack Propagation of Cover Glass With and Without Chemically Tempering

被引:0
|
作者
Wang Q. [1 ]
Li C. [1 ]
Zhou Z. [1 ,2 ]
Cao W. [1 ]
Zhou Z. [1 ,2 ]
Sun H. [1 ]
Huang Y. [1 ,2 ]
Shen Z. [3 ]
机构
[1] College of Materials, Xiamen University, Fujian, Xiamen
[2] Fujian Key Laboratory of Advanced Materials, Fujian, Xiamen
[3] CSIRO Manufacturing, Gate 5,Romanby Road, Clayton, 3168, VIC
来源
Cailiao Daobao/Materials Reports | 2023年 / 37卷 / 05期
关键词
chemically tempering; cover glass; crack initiation; crack propagation; numerical simulation;
D O I
10.11896/cldb.21050255
中图分类号
学科分类号
摘要
T his work focuses on experimental comparison and numerical simulation of the initiation and propagation of crack indentations on ultrathin cover glass. For the glass without chemically tempering, crack initiations were confirmed at 30 s after indentation defect imprinted by 9. 80 N load in ambient environment. However,for the glass with chemically tempering,there were no cracks identified after the defect indented by a 9.80 N load in rigorous environment. ABAQUS numerical simulation results show that:(1)the maximum principal tensile stress is at the four corners of the defect and extends outward at radial directions;(2)the maximum principal tensile stress of the glass with chemically tempering is 465 MPa lower than that without chemically tempering. The position of the maximum claim stress obtained by numerical simulation is consistent with the actual crack initiation position. The insights about crack behaviors is beneficial to facilitating robust ultrathin cover glass development. © 2023 Cailiao Daobaoshe/ Materials Review. All rights reserved.
引用
收藏
相关论文
共 21 条
  • [1] Hamilton L L., Japanese Journal of Applied Physics, 55, 3, (2016)
  • [2] Peng S, Ren H C, Cao X, Et al., International Journal of Applied Glass Science, 10, 3, (2019)
  • [3] Griffith A A., Philosphical Transactions of the Royal Society A, 221, 582-593, (1921)
  • [4] Donald I W., Journal of Materials Science, 24, 12, (1989)
  • [5] Stephen F., International Journal of Applied Glass Science, 3, 2, (2012)
  • [6] Januchta K, Smedskjaer M M., Journal of Non-Crystalline Solids:X, 1, (2019)
  • [7] Gross T M., Journal of Non-Crystalline Solids, 358, 24, (2012)
  • [8] Gross T M, Tomozawa M, Koike A., Journal of Non-Crystalline Solids, 355, 9, (2009)
  • [9] Morozumi H, Yoshida S, Matsuoka J., Journal of Non-Crystalline Solids, 444, (2016)
  • [10] Tobias K B, John C M, Morten M S., Journal of Non-Crystalline Solids, 491, (2018)