Robust weighted regression via PAELLA sample weights

被引:0
作者
Castejón-Limas M. [1 ]
Alaiz-Moreton H. [2 ]
Fernández-Robles L. [1 ]
Alfonso-Cendón J. [1 ]
Fernández-Llamas C. [1 ]
Sánchez-González L. [1 ]
Pérez H. [1 ]
机构
[1] Department of Mechanical, Computer Science and Aerospace Engineering, Universidad de León, León
[2] Department of Electrical, Systems and Automatic Engineering, Universidad de León, León
关键词
Multilayer perceptron; Outlier detection; PAELLA; Robust regression; Weighted regression;
D O I
10.1016/j.neucom.2019.03.108
中图分类号
学科分类号
摘要
This paper reports the usage of the occurrence vector provided by the PAELLA algorithm in the context of robust regression. PAELLA was originally conceived as an outlier detection and data cleaning technique. A novel approach is to use this algorithm not for discarding outliers but to generate information related to the reliability of the observations recorded in the dataset. This approach proves to provide successful results when compared to traditional common practice such as outlier removal. A set of experiments using a contrived difficult artificial dataset are described using both neural networks and classical polynomial fitting. Finally, a successful comparison of our approach to two state-of-the-art algorithms proves the benefits of using the PAELLA algorithm in the context of robust regression. © 2019 Elsevier B.V.
引用
收藏
页码:325 / 333
页数:8
相关论文
共 17 条
  • [11] Walczak B., Neural networks with robust backpropagation learning algorithm, Anal. Chim. Acta, 322, 1, pp. 21-29, (1996)
  • [12] Limas M.C., Mere J.B.O., De Pison A.F.J.M., Gonzalez E.P.V., Outlier detection and data cleaning in multivariate non-normal samples: the PAELLA algorithm, Data Min. Knowl. Discov., (2004)
  • [13] Castejon-Limas M., Alaiz-Moreton H., Fernandez-Robles L., Alfonso-Cendon J., Fernandez-Llamas C., Sanchez-Gonzalez L., Perez H., Coupling the PAELLA algorithm to predictive models, International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding, pp. 505-512, (2018)
  • [14] Castejon-Limas M., Alaiz-Moreton H., Fernandez-Robles L., Alfonso-Cendon J., Fernandez-Llamas C., Sanchez-Gonzalez L., Perez H., Paella as a booster in weighted regression, International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding, pp. 259-265, (2018)
  • [15] Qian N., On the momentum term in gradient descent learning algorithms, Neural Netw., 12, 1, pp. 145-151, (1999)
  • [16] Shao Y.-H., Zhang C.-H., Yang Z.-M., Jing L., Deng N.-Y., An ϵ-twin support vector machine for regression, Neural Comput. Appl., 23, 1, pp. 175-185, (2013)
  • [17] Ye Y.-F., Bai L., Hua X.-Y., Shao Y.-H., Wang Z., Deng N.-Y., Weighted lagrange ϵ-twin support vector regression, Neurocomputing, 197, pp. 53-68, (2016)