Data Augmentation based Malware Detection Using Convolutional Neural Networks

被引:0
作者
Catak F.O. [1 ]
Ahmed J. [2 ,4 ]
Sahinbas K. [3 ]
Khand Z.H. [4 ]
机构
[1] Simula Research Laboratory, Fornebu
[2] Center of Excellence for Robotics, Artificial Intelligence and Blockchain (CRAIB), Department of Computer Science, Sukkur IBA University, Sukkur
[3] Department of Management Information System, Istanbul Medipol University, Istanbul
[4] Department of Computer Science, Sukkur IBA University, Sukkur
关键词
Convolutional neural networks; Cybersecurity; Image augmentation; Malware analysis;
D O I
10.7717/PEERJ-CS.346
中图分类号
学科分类号
摘要
Due to advancements in malware competencies, cyber-attacks have been broadly observed in the digital world. Cyber-attacks can hit an organization hard by causing several damages such as data breach, financial loss, and reputation loss. Some of the most prominent examples of ransomware attacks in history are WannaCry and Petya, which impacted companies’ finances throughout the globe. Both WannaCry and Petya caused operational processes inoperable by targeting critical infrastructure. It is quite impossible for anti-virus applications using traditional signature-based methods to detect this type of malware because they have different characteristics on each contaminated computer. The most important feature of this type of malware is that they change their contents using their mutation engines to create another hash representation of the executable file as they propagate from one computer to another. To overcome this method that attackers use to camouflage malware, we have created three-channel image files of malicious software. Attackers make different variants of the same software because they modify the contents of the malware. In the solution to this problem, we created variants of the images by applying data augmentationmethods. This article aims to provide an image augmentation enhanced deep convolutional neural network (CNN) models for detecting malware families in a metamorphic malware environment. The main contributions of the article consist of three components, including image generation from malware samples, image augmentation, and the last one is classifying the malware families by using a CNN model. In the first component, the collected malware samples are converted into binary file to 3-channel images using the windowing technique. The second component of the system create the augmented version of the images, and the last part builds a classification model. This study uses five different deep CNNmodel formalware family detection. The results obtained by the classifier demonstrate accuracy up to 98%, which is quite satisfactory. Copyright 2021 Catak et al.
引用
收藏
页码:1 / 26
页数:25
相关论文
共 50 条
  • [41] Crack Detection in Paintings Using Convolutional Neural Networks
    Sizyakin, Roman
    Cornelis, Bruno
    Meeus, Laurens
    Dubois, Helene
    Martens, Maximiliaan
    Voronin, Viacheslav
    Pizurica, Aleksandra
    IEEE ACCESS, 2020, 8 : 74535 - 74552
  • [42] Robust smile detection using convolutional neural networks
    Bianco, Simone
    Celona, Luigi
    Schettini, Raimondo
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (06)
  • [43] Investigation of Pneumonia Detection using Convolutional Neural Networks
    Cicenas, Benediktas
    Abromavicius, Vytautas
    2022 IEEE OPEN CONFERENCE OF ELECTRICAL, ELECTRONIC AND INFORMATION SCIENCES (ESTREAM), 2022,
  • [44] Driver Drowsiness Detection Using Convolutional Neural Networks
    Kepesiova, Zuzana
    Ciganek, Jan
    Kozak, Stefan
    PROCEEDINGS OF THE 2020 30TH INTERNATIONAL CONFERENCE CYBERNETICS & INFORMATICS (K&I '20), 2020,
  • [45] NEONATAL SEIZURE DETECTION USING CONVOLUTIONAL NEURAL NETWORKS
    O'Shea, Alison
    Lightbody, Gordon
    Boylan, Geraldine
    Temko, Andriy
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
  • [46] Structural Damage Detection Using Convolutional Neural Networks
    Gulgec, Nur Sila
    Takac, Martin
    Pakzad, Shamim N.
    MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2017, : 331 - 337
  • [47] FRAME-BASED OVERLAPPING SPEECH DETECTION USING CONVOLUTIONAL NEURAL NETWORKS
    Yousefi, Midia
    Hansen, John H. L.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6744 - 6748
  • [48] Distracted driver detection using convolutional neural networks based segmentation model
    Khellal, Atmane
    Boulahmar, Mehrez
    Bahi, Abdelhak
    Nemra, Abdelkrim
    PROGRAM OF THE 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND AUTOMATIC CONTROL, ICEEAC 2024, 2024,
  • [49] Seam Carving Detection Using Convolutional Neural Networks
    da Silva Cieslak, Luiz Fernando
    Pontara da Costa, Kelton Augusto
    Papa, Joao Paulo
    2018 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2018, : 195 - 199
  • [50] Mammogram-Based Cancer Detection Using Deep Convolutional Neural Networks
    Ahmed, Al Hussein
    Salem, Mohammed A-M.
    PROCEEDINGS OF 2018 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2018, : 694 - 699