Stimuli-responsive Polymers-based Two-dimensional Photonic Crystals Biosensors

被引:0
作者
CUI C.-G. [1 ]
YOU A.-M. [2 ]
SHI K.-Y. [3 ]
LIU R.U.I. [4 ]
LU Y.-Y. [5 ]
ZHANG Q. [2 ]
机构
[1] Department of Breast Surgery, the Third Hospital of Jilin University, Changchun
[2] State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun
[3] Provincial Key Laboratory for Gene Diagnosis of Cardiovascular Disease, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis, Department of Cardiology, the Third Hospital of Jilin University, Changchun
[4] Drug Engineering Research Center, Harbin University of Commerce, Harbin
[5] State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun
来源
Chinese Journal of Analytical Chemistry | 2020年 / 48卷 / 07期
基金
中国国家自然科学基金;
关键词
Biosensor; Hydrogels; Photonic crystals; Two-dimensional ordered structure;
D O I
10.1016/S1872-2040(20)60033-0
中图分类号
学科分类号
摘要
Stimuli-responsive polymers-based two-dimensional photonic crystals (2DPCs) are comprised of two main components, stimuli-responsive hydrogels and structured microparticles. Microparticles can self-assemble into ordered structures in two dimensional spacing on the surface of hydrogels. The ordered structure allows structural colors that can be used as indicator phenomena to detect various analytes. The changes in colors are associated with the concentration change of analytes. Therefore, the concentration of the analytes can be determined using a simple colorimetric comparison. 2DPCs have attracted much attention due to their sensing applications. This article covers a brief general introduction of 2DPC and highlights many milestone examples as biosensors to inspire more innovative research work in the near future. © 2020 Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
引用
收藏
页码:e20069 / e20074
页数:5
相关论文
共 31 条
  • [1] Yablonovitch E., Phys. Rev. Lett., 58, pp. 2059-2062, (1987)
  • [2] John S., Phys. Rev. Lett., 58, pp. 2486-2489, (1987)
  • [3] Kinoshita S., Yoshioka S., Kawagoe K., Proc. Biol. Sci., 269, pp. 1417-1421, (2002)
  • [4] Zi J., Yu X.D., Li Y.Z., Hu X.H., Xu C., Wang X.J., Liu X.H., Fu R.T., Proc. Natl. Acad. Sci. USA, 100, pp. 12576-12578, (2003)
  • [5] McPhedran R.C., Nicorovivi N.A., McKenzie D.R., Rouse G.W., Botten L.C., Welch V., Parker A.R., Wohlgennant M., Vardeny V., Phys. B, 338, pp. 182-185, (2003)
  • [6] Pouya C., Stavenga D.G., Vukusic P., Opt. Express, 19, pp. 11355-11364, (2011)
  • [7] Marlow F., Sharifi P., Brinkmann R., Mendive C., Agnew. Chem. Int. Ed., 48, pp. 6212-6233, (2009)
  • [8] Fenzl C., Hirsch T., Wolfbeis O.S., Angew. Chem. Int. Ed., 53, pp. 3318-3335, (2014)
  • [9] Smith N.L., Hong Z., Asher S.A., Analyst, 139, pp. 6379-6386, (2014)
  • [10] Krauss T.F., DeLaRue R.M., Brand S., Nature, 383, pp. 699-702, (1996)