Dry sliding wear behavior of sinter forged micrometric and nanometric yttrium oxide reinforced AA-7075 matrix composites

被引:0
作者
Joshi T.C. [1 ,2 ]
Rathore S.S. [1 ,3 ]
Dabhade V.V. [1 ]
Prakash U. [1 ]
机构
[1] Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee
[2] CSIR-Advanced Materials and Processes Research Institute, Bhopal
[3] Shri Vishwakarma Skill University, Dudhola, Haryana, Palwal
来源
Journal of Alloys and Metallurgical Systems | 2024年 / 6卷
关键词
AA-7075; Metal matrix composites (MMCs); Sinter-forging; Wear; Yttrium oxide;
D O I
10.1016/j.jalmes.2024.100067
中图分类号
学科分类号
摘要
This study aims to investigate the dry sliding wear behaviour of AA-7075 based metal matrix composites developed by powder metallurgy route. AA-7075 metal matrix composites have been developed with 1–15 vol% micrometric yttrium oxide particulate reinforcement and 0.1–3 vol% nanometric yttrium oxide particulate reinforcement by sinter forging.The matrix and reinforcing powders were blended together to obtain a homogeneous composite powder mixture which was cold compacted and further sintered under pure nitrogen atmosphere. The sintered compacts were forged in a closed die to attain full density. The hot forged samples were further artificially age hardened to peak hardness. Wear behavior of AA-7075 and its composites at peak aged condition were investigated at various loads and sliding speeds. The coefficient of friction and wear rate were determined with respect to different volume fractions of micrometric and nanometric yttrium oxide additions to AA-7075 alloy matrix. The overall wear at a constant volume fraction was found to be lower for the compositions having nanometric Y2O3 as compared to micrometric Y2O3. Further the basic wear mechanism of pure aluminum 7075 alloy and reinforced composites consisted of adhesive wear with plastic deformation followed by abrasive wear (due to hard reinforcement particles).Material strengthening by precipitation hardening and reinforcement addition and the role of the forging operation and yttria reinforcements in the removal and uniform distribution of oxide layers present on the AA-7075 powder particles were accountable for the improvement in the wear resistance of the composites. © 2024 The Authors
引用
收藏
相关论文
共 38 条
[1]  
Jasim K.M., Dwarakadasa E.S., Wear in Al-Si alloys under dry sliding conditions, Wear, 119, pp. 119-130, (1987)
[2]  
Jung J., Oak J.J., Kim Y.H., Cho Y.J., Park Y.H., Wear behaviors of pure aluminum and extruded aluminum alloy (AA2024-T4) under variable vertical loads and linear speeds, Met. Mater. Int., 23, pp. 1097-1105, (2017)
[3]  
Bermudez M.D., Martinez-Nicolas G., Carrion F.J., Martinez-Mateo I., Rodriguez J.A., Herrera E.J., Dry and lubricated wear resistance of mechanically-alloyed aluminium-base sintered composites, Wear, 248, pp. 178-186, (2001)
[4]  
Pramanik A., Effects of reinforcement on wear resistance of aluminum matrix composites, Trans. Nonferrous Met. Soc. China (Engl. Ed., 26, pp. 348-358, (2016)
[5]  
G. G, A. V, Tribological behaviour of recursive friction stir processed AA7075, Ind. Lubr. Tribol., 72, pp. 887-894, (2020)
[6]  
Rahman M.H., Al Rashed H.M.M., Characterization of silicon carbide reinforced aluminum matrix Composites, Procedia Eng., 90, pp. 103-109, (2014)
[7]  
Srivyas P.D., Charoo M.S., Role of Fabrication Route on the Mechanical and Tribological Behavior of Aluminum Metal Matrix Composites - A Review, Mater. Today Proc., 5, pp. 20054-20069, (2018)
[8]  
Tavoosi M., Karimzadeh F., Enayati M.H., Wear behaviour of Al-Al2O3 nanocomposites prepared by mechanical alloying and hot pressing, Mater. Sci. Technol., 26, pp. 1114-1119, (2010)
[9]  
Kumar S., Balasubramanian V., Effect of reinforcement size and volume fraction on the abrasive wear behaviour of AA7075 Al/SiCp P/M composites-A statistical analysis, Tribol. Int., 43, pp. 414-422, (2010)
[10]  
Sheu C.-Y., Lin S.-J., Particle size effects on the abrasive wear of 20 vol% SiCp/7075Al composites, Scr. Mater., 35, pp. 1271-1276, (1996)