Preparation and Luminescence Properties of CsPbBr3 Perovskite Quantum Dot Microcrystals

被引:0
|
作者
Wu J. [1 ]
Cao G.-Y. [1 ]
Zhang Y.-J. [1 ]
Yang Y. [1 ]
Yu J.-J. [1 ]
机构
[1] Research Institute of Photonics, Dalian Polytechnic University, Dalian
来源
关键词
Borosilicate; CsPbBr[!sub]3[!/sub; Luminescence properties; Perovskite; Quantum dots;
D O I
10.3788/fgxb20194009.1073
中图分类号
学科分类号
摘要
In order to improve the stability of CsPbBr3 perovskite quantum dots and realize the preparation of solid quantum dot materials with excellent luminescence properties, CsPbBr3 quantum dots were successfully prepared in the borosilicate microcrystals by high temperature melting method to obtain CsPbBr3 quantum dot microcrystals. The particle morphology of the microcrystals was tested by scanning electron microscopy(SEM). The fluorescence characteristics were analyzed by fluorescence spectroscopy and CIE chromaticity coordinates. SEM images show that CsPbBr3 quantum dots with a particle size of about 10 nm are uniformly distributed on the surface and inside of the microcrystals, and the effective coating of CsPbBr3 quantum dots by borosilicate microcrystals was realized. Fluorescence spectroscopy tests show that CsPbBr3 quantum dot microcrystals exhibit a broad excitation spectrum and can achieve strong 517 nm green emission at 360 nm wavelength excitation. The emission spectra and CIE coordinates indicate that the CsPbBr3 quantum dot microcrystals can maintain excellent optical properties at 400℃. The successful preparation of the quantum dot microcrystalline material provides the possibility for the development of perovskite materials in the field of new solid luminescent materials. © 2019, Science Press. All right reserved.
引用
收藏
页码:1073 / 1078
页数:5
相关论文
共 31 条
  • [1] Chen X.H., Ji S.H., Yuan X., Et al., Photoluminescence properties of Mn doped CsPbCl<sub>3</sub> perovskite quantum dots, Chin. J. Lumin., 39, 5, pp. 609-614, (2018)
  • [2] Beal R.E., Slotcavage D.J., Leijtens T., Et al., Cesium lead halide perovskites with improved stability for tandem solar cells, J. Phys. Chem. Lett., 7, 5, pp. 746-751, (2016)
  • [3] Ravi V.K., Markad G.B., Nag A., Et al., Band edge energies and excitonic transition probabilities of colloidal CsPbX<sub>3</sub>(X=Cl, Br, I) perovskite nanocrystals, ACS Energy Lett., 1, 4, pp. 665-671, (2016)
  • [4] Yang W.S., Noh J.H., Seok S.I., Et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 6240, pp. 1234-1237, (2015)
  • [5] Eperon G.E., Stranks S.D., Menelaou C., Et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci., 7, 3, pp. 982-988, (2014)
  • [6] Mei A.Y., Li X., Liu L.F., Et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability, Science, 345, 6194, pp. 295-298, (2014)
  • [7] Seki K., Equivalent circuit representation of hysteresis in solar cells that considers interface charge accumulation: potential cause of hysteresis in perovskite solar cells, Appl. Phys. Lett., 109, 3, (2016)
  • [8] Zhang X.Y., Sun C., Zhang Y., Et al., Bright perovskite nanocrystal films for efficient light-emitting devices, J. Phys. Chem. Lett., 7, 22, pp. 4602-4610, (2016)
  • [9] Li G.R., Tan Z.K., Di D.W., Et al., Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix, Nano Lett., 15, 4, pp. 2640-2644, (2015)
  • [10] Kim Y.H., Cho H., Heo J.H., Et al., Multicolored organic/inorganic hybrid perovskite light-emitting diodes, Adv. Mater., 27, 7, pp. 1248-1254, (2015)