Mortality prediction of COVID-19 patients using soft voting classifier

被引:2
|
作者
Rai N. [1 ]
Kaushik N. [1 ]
Kumar D. [1 ]
Raj C. [1 ]
Ali A. [1 ]
机构
[1] Department of Computer Science & Engineering, Bharati Vidyapeeth's College of Engineering, New Delhi
来源
International Journal of Cognitive Computing in Engineering | 2022年 / 3卷
关键词
Classification; COVID19; Ensemble; Mortality; Soft voting;
D O I
10.1016/j.ijcce.2022.09.001
中图分类号
学科分类号
摘要
COVID-19 is a novel coronavirus that spread around the globe with the initial reports coming from Wuhan, China, turned into a pandemic and caused enormous casualties. Various countries have faced multiple COVID spikes which put the medical infrastructure of these countries under immense pressure with third-world countries being hit the hardest. It can be thus concluded that determining the likeliness of death of a patient helps in avoiding fatalities which inspired the authors to research the topic. There are various ways to approach the problem such as past medical records, chest X-rays, CT scans, and blood biomarkers. Since blood biomarkers are most easily available in emergency scenarios, blood biomarkers were used as the features for the model. The data was first imputed and the training data was oversampled to avoid class imbalance in the model training. The model is composed of a voting classifier that takes in outputs from multiple classifiers. The model was then compared to base models such as Random Forest, XGBoost, and Extra Trees Classifier on multiple evaluation criteria. The F1 score was the concerned evaluation criterion as it maximizes the use of the medical infrastructure with the minimum possible casualties by maximizing true positives and minimizing false negatives. © 2022
引用
收藏
页码:172 / 179
页数:7
相关论文
共 50 条
  • [1] Future Prediction of COVID-19 Vaccine Trends Using a Voting Classifier
    Zaidi, Syed Ali Jafar
    Tariq, Saad
    Belhaouari, Samir Brahim
    DATA, 2021, 6 (11)
  • [2] Is It Possible To Predict Mortality Using Initial Data Of Adult Patients Hospitalized with COVID-19? A Mortality Prediction Model in the Early Phase of COVID-19
    Karabay, Oguz
    Inci, Mustafa Baran
    Ogutlu, Aziz
    Ekerbicer, Hasan
    Guclu, Ertugrul
    Dheir, Hamad
    Yaylaci, Selcuk
    Karabay, Meltem
    Guner, Necip Gokhan
    Koroglu, Mehmet
    Karacan, Alper
    Cokluk, Erdem
    Tomak, Yakup
    KONURALP TIP DERGISI, 2021, 13 (01): : 36 - 44
  • [3] A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study
    David de Gonzalo-Calvo
    Marta Molinero
    Iván D. Benítez
    Manel Perez-Pons
    Nadia García-Mateo
    Alicia Ortega
    Tamara Postigo
    María C. García-Hidalgo
    Thalia Belmonte
    Carlos Rodríguez-Muñoz
    Jessica González
    Gerard Torres
    Clara Gort-Paniello
    Anna Moncusí-Moix
    Ángel Estella
    Luis Tamayo Lomas
    Amalia Martínez de la Gándara
    Lorenzo Socias
    Yhivian Peñasco
    Maria Del Carmen de la Torre
    Elena Bustamante-Munguira
    Elena Gallego Curto
    Ignacio Martínez Varela
    María Cruz Martin Delgado
    Pablo Vidal-Cortés
    Juan López Messa
    Felipe Pérez-García
    Jesús Caballero
    José M. Añón
    Ana Loza-Vázquez
    Nieves Carbonell
    Judith Marin-Corral
    Ruth Noemí Jorge García
    Carmen Barberà
    Adrián Ceccato
    Laia Fernández-Barat
    Ricard Ferrer
    Dario Garcia-Gasulla
    Jose Ángel Lorente-Balanza
    Rosario Menéndez
    Ana Motos
    Oscar Peñuelas
    Jordi Riera
    Jesús F. Bermejo-Martin
    Antoni Torres
    Ferran Barbé
    Respiratory Research, 24
  • [4] A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study
    de Gonzalo-Calvo, David
    Molinero, Marta
    Benitez, Ivan D.
    Perez-Pons, Manel
    Garcia-Mateo, Nadia
    Ortega, Alicia
    Postigo, Tamara
    Garcia-Hidalgo, Maria C.
    Belmonte, Thalia
    Rodriguez-Munoz, Carlos
    Gonzalez, Jessica
    Torres, Gerard
    Gort-Paniello, Clara
    Moncusi-Moix, Anna
    Estella, Angel
    Tamayo Lomas, Luis
    Martinez de la Gandara, Amalia
    Socias, Lorenzo
    Penasco, Yhivian
    de la Torre, Maria Del Carmen
    Bustamante-Munguira, Elena
    Gallego Curto, Elena
    Martinez Varela, Ignacio
    Martin Delgado, Maria Cruz
    Vidal-Cortes, Pablo
    Lopez Messa, Juan
    Perez-Garcia, Felipe
    Caballero, Jesus
    Anon, Jose M.
    Loza-Vazquez, Ana
    Carbonell, Nieves
    Marin-Corral, Judith
    Jorge Garcia, Ruth Noemi
    Barbera, Carmen
    Ceccato, Adrian
    Fernandez-Barat, Laia
    Ferrer, Ricard
    Garcia-Gasulla, Dario
    Lorente-Balanza, Jose Angel
    Menendez, Rosario
    Motos, Ana
    Penuelas, Oscar
    Riera, Jordi
    Bermejo-Martin, Jesus F.
    Torres, Antoni
    Barbe, Ferran
    RESPIRATORY RESEARCH, 2023, 24 (01)
  • [5] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    R. R. van de Leur
    H. Bleijendaal
    K. Taha
    T. Mast
    J. M. I. H. Gho
    M. Linschoten
    B. van Rees
    M. T. H. M. Henkens
    S. Heymans
    N. Sturkenboom
    R. A. Tio
    J. A. Offerhaus
    W. L. Bor
    M. Maarse
    H. E. Haerkens-Arends
    M. Z. H. Kolk
    A. C. J. van der Lingen
    J. J. Selder
    E. E. Wierda
    P. F. M. M. van Bergen
    M. M. Winter
    A. H. Zwinderman
    P. A. Doevendans
    P. van der Harst
    Y. M. Pinto
    F. W. Asselbergs
    R. van Es
    F. V. Y. Tjong
    Netherlands Heart Journal, 2022, 30 : 312 - 318
  • [6] Prediction Models for COVID-19 Mortality Using Artificial Intelligence
    Kim, Dong-Kyu
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (09):
  • [7] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    van de Leur, R. R.
    Bleijendaal, H.
    Taha, K.
    Mast, T.
    Gho, J. M. I. H.
    Linschoten, M.
    van Rees, B.
    Henkens, M. T. H. M.
    Heymans, S.
    Sturkenboom, N.
    Tio, R. A.
    Offerhaus, J. A.
    Bor, W. L.
    Maarse, M.
    Haerkens-Arends, H. E.
    Kolk, M. Z. H.
    van der Lingen, A. C. J.
    Selder, J. J.
    Wierda, E. E.
    van Bergen, P. F. M. M.
    Winter, M. M.
    Zwinderman, A. H.
    Doevendans, P. A.
    van der Harst, P.
    Pinto, Y. M.
    Asselbergs, F. W.
    van Es, R.
    Tjong, F. V. Y.
    NETHERLANDS HEART JOURNAL, 2022, 30 (06) : 312 - 318
  • [8] Machine Learning Classifier Model for Prediction of COVID-19
    Adhikari, Jhimli
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (01): : 12 - 21
  • [9] Serum biomarkers for prediction of mortality in patients with COVID-19
    Loomba, Rohit S.
    Villarreal, Enrique G.
    Farias, Juan S.
    Aggarwal, Gaurav
    Aggarwal, Saurabh
    Flores, Saul
    ANNALS OF CLINICAL BIOCHEMISTRY, 2022, 59 (01) : 15 - 22
  • [10] Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
    Asteris, Panagiotis G.
    Gavriilaki, Eleni
    Touloumenidou, Tasoula
    Koravou, Evaggelia-Evdoxia
    Koutra, Maria
    Papayanni, Penelope Georgia
    Pouleres, Alexandros
    Karali, Vassiliki
    Lemonis, Minas E.
    Mamou, Anna
    Skentou, Athanasia D.
    Papalexandri, Apostolia
    Varelas, Christos
    Chatzopoulou, Fani
    Chatzidimitriou, Maria
    Chatzidimitriou, Dimitrios
    Veleni, Anastasia
    Rapti, Evdoxia
    Kioumis, Ioannis
    Kaimakamis, Evaggelos
    Bitzani, Milly
    Boumpas, Dimitrios
    Tsantes, Argyris
    Sotiropoulos, Damianos
    Papadopoulou, Anastasia
    Kalantzis, Ioannis G.
    Vallianatou, Lydia A.
    Armaghani, Danial J.
    Cavaleri, Liborio
    Gandomi, Amir H.
    Hajihassani, Mohsen
    Hasanipanah, Mahdi
    Koopialipoor, Mohammadreza
    Lourenco, Paulo B.
    Samui, Pijush
    Zhou, Jian
    Sakellari, Ioanna
    Valsami, Serena
    Politou, Marianna
    Kokoris, Styliani
    Anagnostopoulos, Achilles
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2022, 26 (05) : 1445 - 1455