Selective catalytic reduction of NO by CO over spinel CuFe2O4 catalyst: The vital role of oxygen vacancies

被引:3
|
作者
Wu, Chenyang [1 ]
Li, Na [1 ]
Pan, Yuqing [1 ]
Chen, Xiaole [1 ]
Chen, Lehang [1 ]
Zhou, Qulan [1 ]
Huang, Zhong [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[2] Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
来源
关键词
CO-SCR; Oxygen vacancy; Reaction mechanism; MIXED-OXIDE CATALYST; FE; PERFORMANCE; CU; TRANSITION; ADSORPTION; OXIDATION; O-2; MN;
D O I
10.1016/j.jece.2024.113218
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Oxygen vacancies are widely employed to augment the catalytic reactivity in the selective catalytic reduction of NO by CO (CO-SCR) process. Herein, the specific promotion mechanism of oxygen vacancies was intensively explored through a series of CuFe2O4 catalysts via experiments and density functional theory (DFT) simulations. After the modification of oxygen vacancies, NO conversion was enhanced by 20 %-32 % and N2 selectivity was improved. Characterizations revealed that the redox performance, NO adsorption and activation capacity, active centers, and acidic sites of CuFe2O4 can be improved by enriched oxygen vacancies, contributing to the superior CO-SCR performance. DFT results identified that the adsorption energies of reactants were elevated and the intermediate reaction energy barriers were decreased with more oxygen vacancies. Furthermore, the CO-SCR reaction pathways with CuFe2O4 catalyst were proposed according to in-situ test results: it follows the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms in the low-temperature range (50-250 degrees C) and the Marse-van-Krevelen (Mvk) mechanism in the high-temperature range (>= 250 degrees C). Overall, this work highlights the bright prospects of oxygen vacancies on the modification of CO-SCR catalysts.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Mercury/oxygen reaction mechanism over CuFe2O4 catalyst
    Yang, Yingju
    Liu, Jing
    Ding, Junyan
    Yu, Yingni
    Zhang, Junying
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 424
  • [2] Magnetic and catalytic properties of inverse spinel CuFe2O4 nanoparticles
    Anandan, S.
    Selvamani, T.
    Prasad, G. Guru
    Asiri, A. M.
    Wu, J. J.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 432 : 437 - 443
  • [3] Enhanced soot oxidation by oxygen vacancies via K+ doped CuFe2O4 spinel catalysts
    Li, Tianle
    Abuelgasim, Siddig
    Wang, Wenju
    Xiao, Yupeng
    Liu, Chenlong
    Ying, Yaoyao
    Liu, Dong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (11) : 15376 - 15386
  • [4] Oxygen Vacancy-Dependent Photocatalytic Selective Synthesis of an Unsaturated Amide on Spinel CuFe2O4
    Jiang, Tengfei
    Zhang, Yihan
    Zhang, Jiaqi
    Xue, Huaiguo
    Tian, Jingqi
    INORGANIC CHEMISTRY, 2023, 62 (14) : 5334 - 5340
  • [5] Structural phase transition in CuFe2O4 spinel
    Balagurov, A. M.
    Bobrikov, I. A.
    Maschenko, M. S.
    Sangaa, D.
    Simkin, V. G.
    CRYSTALLOGRAPHY REPORTS, 2013, 58 (05) : 710 - 717
  • [6] Structural phase transition in CuFe2O4 spinel
    A. M. Balagurov
    I. A. Bobrikov
    M. S. Maschenko
    D. Sangaa
    V. G. Simkin
    Crystallography Reports, 2013, 58 : 710 - 717
  • [7] Selective catalytic hydrodeoxygenation of vanillin to 2-Methoxy-4-methyl phenol and 4-Methyl cyclohexanol over Pd/CuFe2O4 and PdNi/CuFe2O4 catalysts
    More, Ganesh Sunil
    Kanchan, Dipika Rajendra
    Banerjee, Arghya
    Srivastava, Rajendra
    CHEMICAL ENGINEERING JOURNAL, 2023, 462 (462)
  • [8] Spinel CuFe2O4: a precursor for copper catalyst with high thermal stability and activity
    Satoshi Kameoka
    Toyokazu Tanabe
    An Pang Tsai
    Catalysis Letters, 2005, 100 : 89 - 93
  • [9] Spinel CuFe2O4:: a precursor for copper catalyst with high thermal stability and activity
    Kameoka, S
    Tanabe, T
    Tsai, AP
    CATALYSIS LETTERS, 2005, 100 (1-2) : 89 - 93
  • [10] CuFe2O4 magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol
    Feng, Jie
    Su, Li
    Ma, Yanhua
    Ren, Cuiling
    Guo, Qing
    Chen, Xingguo
    CHEMICAL ENGINEERING JOURNAL, 2013, 221 : 16 - 24