共 55 条
[41]
Smith V., Chiang C.-K., Sanjabi M., Talwalkar A.S., Federated multi-task learning, Proc. Adv. Neural Inf. Process. Syst., pp. 4424-4434, (2017)
[42]
Mohri M., Sivek G., Suresh A.T., Agnostic Federated Learning, (2019)
[43]
Li T., Sanjabi M., Smith V., Fair Resource Allocation in Federated Learning, (2019)
[44]
Li X., Huang K., Yang W., Wang S., Zhang Z., On the Convergence of Fedavg on Non-IID Data, (2019)
[45]
Syta E., Et al., Scalable bias-resistant distributed randomness, Proc. IEEE Symp. Security Privacy (SP), pp. 444-460, (2017)
[46]
Diffie W., Hellman M., New directions in cryptography, IEEE Trans. Inf. Theory, 22, 6, pp. 644-654, (2006)
[47]
So J., Guler B., Avestimehr A.S., Mohassel P., CodedPrivateML: A Fast and Privacy-Preserving Framework for Distributed Machine Learning, (2019)
[48]
So J., Guler B., Avestimehr A.S., A scalable approach for privacy-preserving collaborative machine learning, Proc. Adv. Neural Inf. Process. Syst., (2020)
[49]
Cover T.M., Thomas J.A., Elements of Information Theory (Telecommunications and Signal Processing), (2006)
[50]
He C., Et al., FedML: A Research Library and Benchmark for Federated Machine Learning, (2020)