共 55 条
[1]
McMahan H.B., Moore E., Ramage D., Hampson S., Arcas B.A.Y., Communication-efficient learning of deep networks from decentralized data, Proc. Int. Conf. Artif. Int. Stat. (AISTATS), pp. 1273-1282, (2017)
[2]
Bonawitz K., Et al., Practical secure aggregation for federated learning on user-held data, Proc. Conf. Neural Inf. Process. Syst., (2016)
[3]
Bonawitz K., Et al., Practical secure aggregation for privacy-preserving machine learning, Proc. ACM SIGSAC Conf. Comput. Commun. Security, pp. 1175-1191, (2017)
[4]
Kairouz P., Et al., Advances and Open Problems in Federated Learning, (2019)
[5]
Zhu L., Liu Z., Han S., Deep leakage from gradients, Proc. Adv. Neural Inf. Process. Syst., pp. 14774-14784, (2019)
[6]
Wang Z., Song M., Zhang Z., Song Y., Wang Q., Qi H., Beyond inferring class representatives: User-level privacy leakage from federated learning, Proc. IEEE INFOCOM Conf. Comput. Commun., pp. 2512-2520, (2019)
[7]
Geiping J., Bauermeister H., Droge H., Moeller M., Inverting Gradients—How Easy Is It to Break Privacy in Federated Learning?, (2020)
[8]
Yang T., Et al., Applied Federated Learning: Improving Google Keyboard Query Suggestions, (2018)
[9]
McMahan H.B., Ramage D., Talwar K., Zhang L., Learning differentially private recurrent language models, Proc. Int. Conf. Learn. Represent. (ICLR), pp. 1-14, (2018)
[10]
Bonawitz K., Et al., Towards federated learning at scale: System design, Proc. 2nd SysML Conf., (2019)