Side-viewing endoscopic imaging probe for swept source optical coherence tomography

被引:0
作者
Wu T. [1 ,2 ]
Pan R. [1 ,2 ]
Cao K. [1 ,2 ]
Zhang L. [1 ,2 ]
Wang J. [2 ]
Lu Y. [1 ,2 ]
He C. [1 ,2 ]
Liu Y. [2 ]
机构
[1] College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing
[2] College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing
基金
中国国家自然科学基金;
关键词
Beam transfer matrix; Endoscopic probe; Endoscopic swept source optical coherence tomography; Gradient index lens;
D O I
10.1016/j.optcom.2020.125596
中图分类号
学科分类号
摘要
Endoscopic optical coherence tomography (OCT) has many promising applications in the fields of medical research and clinical diagnosis. In this letter, we present a side-viewing endoscopic OCT probe based on a gradient index (GRIN) lens with an air gap. By adjusting the length of the air gap the optical performance of the probe can be flexibly tuned. The quantitative relationships between the optical performance parameters of the probe and its structural parameters are theoretically analyzed by using the ABCD beam transfer matrix theory. The developed probe has a maximum diameter of 1.4 mm and a rigid length of 11 mm. The working distance and the spot size of the probe are measured to be 2.71 mm and 21.24 μm respectively. An endoscopic swept source OCT (SS-OCT) imaging system with an adjustable axial scan rate is built which can flexibly match the rotational scanning speed of the probe. The circumferential OCT images of the tape and the biological tissue are acquired and reconstructed. © 2020 Elsevier B.V.
引用
收藏
相关论文
共 26 条
[1]  
Huang D., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G., Chang W., Hee M.R., Flotte T., Gregory K., Puliaftto C.A., Fujimoto J.G., Optical coherence tomography, Science, 254, pp. 1178-1181, (1991)
[2]  
Sergeev A.M., Gelikonov V.M., Gelikonov G.V., Feldchtein F.I., Kuranov R.V., Gladkova N.D., In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa, Opt. Express, 1, pp. 432-440, (1997)
[3]  
Liang S., Saidi A., Jing J., Liu G., Zhang J., Sun C., Narula J., Chen Z., Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner, J. Biomed. Opt., 17, (2012)
[4]  
Yaqoob Z., Wu J., McDowell E.J., Heng X., Yang C., Methods and application areas of endoscopic optical coherence tomography, J. Boimed. Opt., 11, (2006)
[5]  
Pitris C., Brezinski M.E., Bouma B.E., Tearney G.J., Southern J.F., Fujimoto J.G., High resolution imaging of the upper respiratory tract with optical coherence tomography, Am. J. Respir. Crit. Care. Med., 157, pp. 1640-1644, (1998)
[6]  
Tsuboi M., Hayashi A., Ikeda N., Honda H., Kato Y., Ichinose S., Kato H., Optical coherence tomography in the diagnosis of bronchial lesions, Lung Cancer, 49, pp. 378-394, (2005)
[7]  
Brezinski M.E., Tearney G.J., Weissman N.J., Boppart S.A., Bouma B.E., Hee M.R., Weyman A.E., Swanson E.A., Southern J.F., Fujimoto J.G., Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound, Heart, 77, pp. 397-403, (1997)
[8]  
Bonnema G.T., Cardinal K.O., McNally J.B., Williams S.K., Barton J.K., Assessment of blood vessel mimics with optical coherence tomography, J. Biomed. Opt., 12, (2007)
[9]  
Qi X., Pan Y., Sivak M.V., Willis J.E., Isenberg G., Rollins A.M., Image analysis for classification of dysplasia in Barrett's esophagus using endoscopic optical coherence tomography, Biomed. Opt. Express., 1, pp. 825-847, (2010)
[10]  
Tsai T.H., Zhou C., Tao Y.K., Lee H.C., Ahsen O.O., Figueiredo M., Kirtane T., Structural markers observed with endoscopic three dimensional optical coherence tomography correlating with Barrett's esophagus radiofrequency ablation treatment response, Gastrointest. Endosc., 76, pp. 1104-1112, (2012)