共 59 条
[1]
Weinzaepfel P., Revaud J., Harchaoui Z., Schmid C., DeepFlow: Large displacement optical flow with deep matching, Proc. IEEE Int. Conf. Comput. Vis., pp. 1385-1392, (2013)
[2]
Dosovitskiy A., Et al., FlowNet: Learning optical flow with convolutional networks, Proc. IEEE Int. Conf. Comput. Vis., pp. 2758-2766, (2015)
[3]
Ilg E., Mayer N., Saikia T., Keuper M., Dosovitskiy A., Brox T., FlowNet 2.0: Evolution of optical flow estimation with deep networks, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 2462-2470, (2016)
[4]
Sun D., Yang X., Liu M.-Y., Kautz J., PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 8934-8943, (2018)
[5]
Ranjan A., Black M.J., Optical flowestimation using a spatial pyramid network, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 4161-4170, (2017)
[6]
Xu J., Ranftl R., Koltun V., Accurate optical flow via direct cost volume processing, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1289-1297, (2017)
[7]
Bijelic M., Gruber T., Ritter W., A benchmark for LiDAR sensors in fog: Is detection breaking down?, Proc. IEEE Intell. Veh. Symp., pp. 760-767, (2018)
[8]
Yan W., Sharma A., Tan R.T., Optical flow in dense foggy scenes using semi-supervised learning, Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 13259-13268, (2020)
[9]
Fortun D., Bouthemy P., Kervrann C., Optical flow modeling and computation: A survey, Comput. Vis. Image Understanding, 134, pp. 1-21, (2015)
[10]
Ronneberger O., Fischer P., Brox T., U-Net: Convolutional networks for biomedical image segmentation, Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Interv., pp. 234-241, (2015)