Sparsity Constrained Fusion of Hyperspectral and Multispectral Images

被引:0
|
作者
Fu, Xiyou [1 ]
Jia, Sen [1 ]
Xu, Meng [1 ]
Zhou, Jun [2 ]
Li, Qingquan [3 ]
机构
[1] College of Computer Science and Software Engineering, The Key Laboratory for Geo-Environmental Monitoring of Coastal Zone, The Ministry of Natural Resources, Shenzhen University, Shenzhen, China
[2] School of Information and Communication Technology, Griffith University, Nathan,QLD, Australia
[3] Key Laboratory for Geo-Environmental Monitoring of Coastal Zone, The Ministry of Natural Resources, Shenzhen University, Shenzhen, China
来源
IEEE Geoscience and Remote Sensing Letters | 2022年 / 19卷
关键词
This work was supported in part by the National Natural Science Foundation of China under Grant 41971300; Grant; 61901278; and Grant 62001303; in part by the Key Project of Department of Education of Guangdong Province under Grant 2020ZDZX3045; in part by the Natural Science Foundation of Guangdong Province under Grant 2021A1515011413; in part by the China Postdoctoral Science Foundation under Grant 2021M692162; and in part by the Shenzhen Scientific Research and Development Funding Program under Grant 20200803152531004;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Sparsity Constrained Fusion of Hyperspectral and Multispectral Images
    Fu, Xiyou
    Jia, Sen
    Xu, Meng
    Zhou, Jun
    Li, Qingquan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] BAYESIAN FUSION OF HYPERSPECTRAL AND MULTISPECTRAL IMAGES
    Wei, Qi
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] Fusion of airborne hyperspectral and multispectral images
    Zhukov, B
    Oertel, D
    Strobl, P
    Lehmann, F
    Lehner, M
    ALGORITHMS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY II, 1996, 2758 : 148 - 159
  • [4] Detail focused fusion of hyperspectral and multispectral images
    Fang S.
    Yan M.
    Zhang J.
    Cao Y.
    National Remote Sensing Bulletin, 2022, 26 (12) : 2594 - 2602
  • [5] SPECTRAL MODULATION FOR FUSION OF HYPERSPECTRAL AND MULTISPECTRAL IMAGES
    Lu, Xiaochen
    Yu, Xiangzhen
    Tang, Wenming
    Zhu, Bingqi
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3149 - 3152
  • [6] Fusion of hyperspectral and multispectral infrared astronomical images
    Guilloteau, Claire
    Oberlin, Thomas
    Berne, Olivier
    Dobigeon, Nicolas
    2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2020,
  • [7] A HYBRID SPARSITY AND CONSTRAINED ENERGY MINIMIZATION DETECTOR FOR HYPERSPECTRAL IMAGES
    Zhang, Yifan
    Xie, Bobo
    Sun, Jun
    Peng, Yang
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1137 - 1140
  • [8] FUSION OF MULTISPECTRAL AND HYPERSPECTRAL IMAGES BASED ON SPARSE REPRESENTATION
    Wei, Qi
    Bioucas-Dias, Jose M.
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 1577 - 1581
  • [9] A Locally Optimized Model for Hyperspectral and Multispectral Images Fusion
    Ren, Kai
    Sun, Weiwei
    Meng, Xiangchao
    Yang, Gang
    Peng, Jiangtao
    Huang, Jingfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Fusion of Hyperspectral and Multispectral Images by Convolutional Sparse Representation
    Xing, Changda
    Cong, Yuhua
    Wang, Zhisheng
    Wang, Meiling
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19