3D-printing of arsenic sulfide chalcogenide glasses

被引:39
作者
Baudet E. [1 ]
Ledemi Y. [1 ]
Larochelle P. [1 ]
Morency S. [1 ]
Messaddeq Y. [1 ]
机构
[1] Centre d'Optique, Photonique et Laser (COPL), Université Laval, 2375 rue de la Terrasse, Québec, G1 V 0A6, QC
来源
Optical Materials Express | 2019年 / 9卷 / 05期
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1364/OME.9.002307
中图分类号
学科分类号
摘要
The use of a 3D-printing additive manufacturing process is reported for the first time for the extrusion of chalcogenide glasses by using a filament feed. Several challenges were overcome: preparation of chalcogenide glass filaments by the crucible technique, optimization of extrusion temperature or even filament feeding. The As 40 S 60 chalcogenide glass was selected for its low glass transition temperature (T g = 188°C) and ease of synthesis and processing. It was extruded using a commercial 3D-printer at a temperature around 140°C above the glass transition temperature. 3D-printed glass specimens were then characterized and no significant difference was observed in comparison with the bulk precursor glass in terms of chemical and thermal properties. This first report of additive manufacturing of chalcogenide glass complex shapes paves the way for the development of novel specialty optical components that could not be produced by conventional methods, including the fabrication of multimaterial optical fiber preforms. © 2019 Optical Society of America.
引用
收藏
页码:2307 / 2317
页数:10
相关论文
共 49 条
  • [1] Abouraddy A.F., Bayindir M., Benoit G., Hart S.D., Kuriki K., Orf N., Shapira O., Sorin F., Temelkuran B., Fink Y., Towards multimaterial multifunctional fibres that see, hear, sense and communicate, Nat. Mater, 6, 5, pp. 336-347, (2007)
  • [2] Schmidt M.A., Argyros A., Sorin F., Hybrid Optical Fibers-An Innovative Platform for In-Fiber Photonic Devices, Adv. Opt. Mater, 4, 1, pp. 13-36, (2016)
  • [3] Tao G.M., Abouraddy A.F., Stolyarov A.M., Multimaterial Fibers, Int. J. Appl. Glass Sci, 3, 4, pp. 349-368, (2012)
  • [4] Zhang X., Bureau B., Lucas P., Boussard-Pledel C., Lucas J., Gasses for seeing beyond visible, Chem. Eng. J, 14, 2, pp. 432-442, (2008)
  • [5] Gattass R.R., Thapa R., Kung F.H., Busse L.E., Shaw L.B., Sanghera J.S., Review of infrared fiber-based components, Appl. Opt, 54, 31, pp. F25-F34, (2015)
  • [6] Tao G.M., Ebendorff-Heidepriem H., Stolyarov A.M., Danto S., Badding J.V., Fink Y., Ballato J., Abouraddy A.F., Infrared fibers, Adv. Opt. Photonics, 7, 2, pp. 379-458, (2015)
  • [7] Snopatin G.E., Shiryaev V.S., Plotnichenko V.G., Dianov E.M., Churbanov M.F., High-purity chalcogenide glasses for fiber optics, Inorg. Mater, 45, 13, pp. 1439-1460, (2009)
  • [8] Ari J., Starecki F., Boussard-Pledel C., Ledemi Y., Messaddeq Y., Doualan J.L., Braud A., Bureau B., Nazabal V., Co-doped Dy <sup>3+ </sup> and Pr <sup>3+</sup> Ga <sub>5</sub> Ge <sub>20</sub>
  • [9] Abdellaoui N., Starecki F., Boussard-Pledel C., Shpotyuk Y., Doualan J.L., Braud A., Baudet E., Nemec P., Chevire F., Dussauze M., Bureau B., Camy P., Nazabal V., Tb <sup>3+</sup> doped Ga <sub>5</sub> Ge <sub>2</sub> 0Sb
  • [10] Petersen C.R., Moller U., Kubat I., Zhou B., Dupont S., Ramsay J., Benson T., Sujecki S., Abdel-Moneim N., Tang Z., Furniss D., Seddon A., Bang O., Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nat. Photonics, 8, 11, pp. 830-834, (2014)