Gum Arabic-stabilized upconverting nanoparticles for printing applications

被引:0
作者
Homann C. [1 ]
Rodrigues E.M. [1 ]
Orsini P. [2 ]
Savard K. [2 ]
Togola C.-B. [2 ]
de Denus-Baillargeon M.-M. [2 ]
Massabki M. [2 ]
Hemmer E. [1 ]
机构
[1] Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, K1N 6N5, ON
[2] Optech, 1111 Rue Lapierre, Montreal, H8N 2J4, QC
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Amphiphilic ligand; Gum Arabic; Ink; Printing; Upconversion;
D O I
10.1016/j.omx.2024.100290
中图分类号
学科分类号
摘要
Upconverting nanoparticles (UCNPs) have been proposed for a variety of applications ranging from biomedical probes to luminescent sensors and security tags. Yet, bringing UCNPs into real-life, technologically relevant products requires implementation into industry-friendly processes. The need for stable dispersions, clean films or dry powders challenges users who look for a way to use UCNPs. In this work, an ink formulation was developed that offers a straightforward way to print UCNPs on glass and metallic substrates. The use of Gum Arabic as biocompatible emulsifier allowed to implement the NaGdF4:Er,Yb/NaGdF4 core/shell UCNPs into water-based ink formulations without the need of complex surface chemistry. The formulation, based on water, glycerin, and propanediol, exhibited good stability and applicability for printing with a commercial aerosol jet printer. Bright upconversion emission was retained upon printing, and the obtained UCNP films were used in proof-of-concept luminescent thermal sensing. © 2024 The Author(s)
引用
收藏
相关论文
共 85 条
[31]  
Meruga J.M., Baride A., Cross W., Kellar J.J., May P.S., Red-green-blue printing using luminescence-upconversion inks, J. Mater. Chem. C, 2, pp. 2221-2227, (2014)
[32]  
Balabhadra S., Debasu M.L., Brites C.D.S., Ferreira R.A.S., Carlos L.D., Upconverting nanoparticles working as primary thermometers in different media, J. Phys. Chem. C, 121, pp. 13962-13968, (2017)
[33]  
Brites C.D.S., Lima P.P., Silva N.J.O., Millan A., Amaral V.S., Palacio F., Carlos L.D., Thermometry at the nanoscale, Nanoscale, 4, pp. 4799-4829, (2012)
[34]  
Brites C.D.S., Martinez E.D., Urbano R.R., Rettori C., Carlos L.D., Self-calibrated double luminescent thermometers through upconverting nanoparticles, Front. Chem., 7, (2019)
[35]  
Dong B., Liu D.P., Wang X.J., Yang T., Miao S.M., Li C.R., Optical thermometry through infrared excited green upconversion emissions in Er<sup>3+</sup>–Yb<sup>3+</sup> codoped Al<sub>2</sub>O<sub>3</sub> , Appl. Phys. Lett., 90, (2007)
[36]  
Jia M., Chen X., Sun R., Wu D., Li X., Shi Z., Chen G., Shan C., Lanthanide-based ratiometric luminescence nanothermometry, Nano Res., 16, pp. 2949-2967, (2023)
[37]  
Martinez E.D., Brites C.D.S., Urbano R.R., Rettori C., Carlos L.D., Hyperspectral imaging thermometry assisted by upconverting nanoparticles: Experimental artifacts and accuracy, Phys. B Condens. Matter, 629, (2022)
[38]  
Wickberg A., Mueller J.B., Mange Y.J., Fischer J., Nann T., Wegener M., Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence, Appl. Phys. Lett., 106, (2015)
[39]  
Habibi M., Bagheri P., Ghazyani N., Zare-Behtash H., Heydari E., 3D printed optofluidic biosensor: NaYF<sub>4</sub>: Yb<sup>3+</sup>,Er<sup>3+</sup> upconversion nano-emitters for temperature sensing, Sens. Actuat. A Phys., 326, (2021)
[40]  
Gu B., Zhang Q., Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems, Adv. Sci., 5, (2018)