Gum Arabic-stabilized upconverting nanoparticles for printing applications

被引:0
作者
Homann C. [1 ]
Rodrigues E.M. [1 ]
Orsini P. [2 ]
Savard K. [2 ]
Togola C.-B. [2 ]
de Denus-Baillargeon M.-M. [2 ]
Massabki M. [2 ]
Hemmer E. [1 ]
机构
[1] Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, K1N 6N5, ON
[2] Optech, 1111 Rue Lapierre, Montreal, H8N 2J4, QC
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Amphiphilic ligand; Gum Arabic; Ink; Printing; Upconversion;
D O I
10.1016/j.omx.2024.100290
中图分类号
学科分类号
摘要
Upconverting nanoparticles (UCNPs) have been proposed for a variety of applications ranging from biomedical probes to luminescent sensors and security tags. Yet, bringing UCNPs into real-life, technologically relevant products requires implementation into industry-friendly processes. The need for stable dispersions, clean films or dry powders challenges users who look for a way to use UCNPs. In this work, an ink formulation was developed that offers a straightforward way to print UCNPs on glass and metallic substrates. The use of Gum Arabic as biocompatible emulsifier allowed to implement the NaGdF4:Er,Yb/NaGdF4 core/shell UCNPs into water-based ink formulations without the need of complex surface chemistry. The formulation, based on water, glycerin, and propanediol, exhibited good stability and applicability for printing with a commercial aerosol jet printer. Bright upconversion emission was retained upon printing, and the obtained UCNP films were used in proof-of-concept luminescent thermal sensing. © 2024 The Author(s)
引用
收藏
相关论文
共 85 条
[1]  
de Sousa Ferreira F., de Morais A.J., Calado C.M.S., Iikawa F., Junior O.D.D.C., Brunet G., Murugesu M., Mazali I.O., Sigoli F.A., Dual magnetic field and temperature optical probes of controlled crystalline phases in lanthanide-doped multi-shell nanoparticles, Nanoscale, 13, pp. 14723-14733, (2021)
[2]  
Cressoni C., Vurro F., Milan E., Muccilli M., Mazzer F., Gerosa M., Boschi F., Spinelli A.E., Badocco D., Pastore P., Delgado N.F., Collado M.H., Marzola P., Speghini A., From nanothermometry to bioimaging: lanthanide-activated KY<sub>3</sub>F<sub>10</sub> nanostructures as biocompatible multifunctional tools for nanomedicine, ACS Appl. Mater. Interfaces, 15, pp. 12171-12188, (2023)
[3]  
Raab M., Skripka A., Bulmahn J., Pliss A., Kuzmin A., Vetrone F., Prasad P., Decoupled rare-earth nanoparticles for on-demand upconversion photodynamic therapy and high-contrast near infrared imaging in NIR IIb, ACS Appl. Bio Mater., 5, pp. 4948-4954, (2022)
[4]  
Yi Z., Luo Z., Qin X., Chen Q., Liu X., Lanthanide-activated nanoparticles: a toolbox for bioimaging, therapeutics, and neuromodulation, Acc. Chem. Res., 53, pp. 2692-2704, (2020)
[5]  
Hemmer E., Venkatachalam N., Hyodo H., Hattori A., Ebina Y., Kishimoto H., Soga K., Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging, Nanoscale, 5, (2013)
[6]  
Gnach A., Lipinski T., Bednarkiewicz A., Rybka J., Capobianco J.A., Upconverting nanoparticles: assessing the toxicity, Chem. Soc. Rev., 44, pp. 1561-1584, (2015)
[7]  
Homann C., Krukewitt L., Frenzel F., Grauel B., Wurth C., Resch-Genger U., Haase M., NaYF<sub>4</sub>:Yb,Er/NaYF<sub>4</sub> core/shell nanocrystals with high upconversion luminescence quantum yield, Angew. Chem. Int. Ed., 57, pp. 8765-8769, (2018)
[8]  
Kraft M., Wurth C., Muhr V., Hirsch T., Resch-Genger U., Particle-size-dependent upconversion luminescence of NaYF<sub>4</sub>: Yb, Er nanoparticles in organic solvents and water at different excitation power densities, Nano Res., 11, pp. 6360-6374, (2018)
[9]  
Cong T., Ding Y., Xin S., Hong X., Zhang H., Liu Y., Solvent-induced luminescence variation of upconversion nanoparticles, Langmuir, 32, pp. 13200-13206, (2016)
[10]  
Fischer S., Bronstein N.D., Swabeck J.K., Chan E.M., Alivisatos A.P., Precise tuning of surface quenching for luminescence enhancement in core–shell lanthanide-doped nanocrystals, Nano Lett., 16, pp. 7241-7247, (2016)