Grinding Wheel Element Determination Support System by Random Forest Method

被引:0
作者
Kodama H.
机构
来源
Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering | 2022年 / 88卷 / 07期
关键词
data‑mining; decision tree; grinding wheel; material characteristics; random forest;
D O I
10.2493/jjspe.88.556
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:556 / 559
页数:3
相关论文
共 15 条
[1]  
Dogan A., Birant D., Machine learning and data mining in manufacturing, Expert Systems with Applications, 166, (2021)
[2]  
Fayyad U., Piatetsky-Shapiro G., Smyth P., From Data Mining to Knowledge Discovery in Databases, AI Magazine, 17, 3, (1996)
[3]  
Adachi T., Talavage J.J., Modie C.L., A rule based control method for a multi loop production system, Artificial Intelligence in Engineering, 4, 3, (1989)
[4]  
Tomlinson S., Novel Approaches to the calculation and comparison of thermoregulatory parameters, J. Thermal Biology, 57, (2016)
[5]  
Jothi N., Rashid N., Husain W., Data Mining in Healthcare―A Review, Procedia Computer Science, 72, (2015)
[6]  
Kodama H., Uotani I., Ohashi K., Decision support system for principal factors of grinding wheel using data mining methodology, Int. J. Abrasive Technology, 9, 2, (2019)
[7]  
Kodama H., Mendori T., Ohashi K., Investigation of principal factor decision support system using data mining methodology for surface grinding wheel, Int. J. Abrasive Technology, 9, 4, (2019)
[8]  
Opitz D., Maclin R., Popular Ensemble Methods: An Empirical Study, J. Artificial Intelligence Research, 11, (1999)
[9]  
Breiman L., Random Forests, Machine learning, 45, 1, (2001)
[10]  
Rodiguez G.G., Gonzalez-Cava J.M., Perez J.A.M., An intelligent decision support system for production planning based on machine learning, Journal of Intelligent Manufacturing, 31, (2020)