Radio Number for Generalized Petersen Graphs P(n,2)

被引:0
|
作者
Zhang F. [1 ]
Nazeer S. [2 ]
Habib M. [3 ]
Zia T.J. [4 ]
Ren Z. [5 ]
机构
[1] School of Electron and Electricity Engineering, Baoji University of Arts and Sciences, Baoji
[2] Department of Mathematics, Lahore College for Women University, Lahore
[3] Department of Mathematics, University of Engineering and Technology Lahore, Lahore
[4] Department of Mathematics, COMSATS University of Islamabad at Lahore, Lahore
[5] Shaanxi Lingyun Electronics Group Company Ltd., Baoji
关键词
Diameter; generalized Petersen graph; radio number;
D O I
10.1109/ACCESS.2019.2943835
中图分类号
学科分类号
摘要
Let G be a connected graph and d(μ,ω) be the distance between any two vertices of G. The diameter of G is denoted by diam(G) and is equal to max{d(μ,ω); μ, ω ∈ G}. The radio labeling (RL) for the graph G is an injective function F : V(G) → N ∪ {0} such that for any pair of vertices μ and ω |F(μ) - F(ω)|≥ diam(G)-d(μ,ω)+1. The span of radio labeling is the largest number in F(V). The radio number of G, denoted by rn(G) is the minimum span over all radio labeling of G. In this paper, we determine radio number for the generalized Petersen graphs, P(n,2), n=4k+2. Further the lower bound of radio number for P(n,2) when n=4k is determined. © 2013 IEEE.
引用
收藏
页码:142000 / 142008
页数:8
相关论文
共 50 条
  • [21] On the Independence Number of the Generalized Petersen Graph P (n, k)
    Xu, Lian-Cheng
    Yang, Yuan-Sheng
    Xia, Zun-Quan
    Tian, Jing-Xi
    OPERATIONS RESEARCH AND ITS APPLICATIONS, PROCEEDINGS, 2009, 10 : 40 - +
  • [22] Radio Number for Generalized Petersen Graphs <inline-formula> <tex-math notation="LaTeX">$P(n,2)$ </tex-math></inline-formula>
    Zhang, Feige
    Nazeer, Saima
    Habib, Mustafa
    Zia, Tariq Javed
    Ren, Zhendong
    IEEE ACCESS, 2019, 7 : 142000 - 142008
  • [23] LOWER BOUND ON THE NUMBER OF HAMILTONIAN CYCLES OF GENERALIZED PETERSEN GRAPHS
    Lu, Weihua
    Yang, Chao
    Ren, Han
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 297 - 305
  • [24] Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs
    Qin, Yan-Li
    Xia, Binzhou
    Zhou, Sanming
    JOURNAL OF GRAPH THEORY, 2021, 97 (01) : 70 - 81
  • [25] The radio number of (W-n : 2) graphs
    Sweetly, R.
    Joseph, J. Paulraj
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2009, 12 (06) : 729 - 736
  • [26] On the diameter of generalized Petersen graphs
    Loudiki, Laila
    Kchikech, Mustapha
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04) : 1035 - 1042
  • [27] Domination in generalized Petersen graphs
    Bohdan Zelinka
    Czechoslovak Mathematical Journal, 2002, 52 : 11 - 16
  • [28] On Distance-Balanced Generalized Petersen Graphs
    Ma, Gang
    Wang, Jianfeng
    Klavzar, Sandi
    ANNALS OF COMBINATORICS, 2024, 28 (01) : 329 - 349
  • [29] Domination in generalized Petersen graphs
    Zelinka, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (01) : 11 - 16
  • [30] On Distance-Balanced Generalized Petersen Graphs
    Gang Ma
    Jianfeng Wang
    Sandi Klavžar
    Annals of Combinatorics, 2024, 28 : 329 - 349