Adaptive Dead Time Compensation for Continuous Cross-Period Single Phase-Shift Control of Dual Active Bridge Converters

被引:0
|
作者
Veréb S. [1 ]
Futó A. [1 ]
Sütő Z. [1 ]
Balogh A. [1 ]
Varjasi I. [1 ]
机构
[1] Department of Automation and Applied Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest
来源
Renewable Energy and Power Quality Journal | 2022年 / 20卷
关键词
Control; DAB converter; Dead time; Power conversion;
D O I
10.24084/repqj20.278
中图分类号
学科分类号
摘要
The load transient response of a power converter is an important property, especially in a test equipment application. The dynamic behavior of a dual active bridge converter mainly depends on the switching frequency, the transformer leakage inductance, and the capacitor bank size. Using the Continuous Cross-Period Single Phase-Shift control, an excellent load transient response can be achieved without the need for expensive hardware components. However, in practical applications, the switch delay and the required inserted dead time distort the current waveform, increasing the electromagnetic noise and reducing the effectiveness of the regulation. In this paper, an adaptive dead time compensation technique is presented, which eliminates such phenomenon. The effects of dead time are analyzed, and mathematical formulas are derived, from which the adaptive compensation technique is formalized. The algorithm is implemented on a TMS320F28075 DSP and tested in a HIL environment. The study revealed that the proposed adaptive technique could mitigate the current waveform distortions. © 2022, European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ). All rights reserved.
引用
收藏
页码:256 / 262
页数:6
相关论文
empty
未找到相关数据