Flower-like Z-scheme heterostructure of cobalt porphyrin/ZnIn2S4 for boosting photocatalytic solar fuel production

被引:7
作者
Qi Y. [1 ]
Li S. [1 ]
Bao T. [1 ]
She P. [1 ,2 ]
Rao H. [1 ]
Qin J.-S. [1 ]
机构
[1] State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun
[2] State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun
基金
中国国家自然科学基金;
关键词
Carbon dioxide reduction; Cobalt porphyrin; Photocatalysis; Z-scheme; ZnIn[!sub]2[!/sub]S[!sub]4[!/sub;
D O I
10.1016/j.apcatb.2024.124299
中图分类号
学科分类号
摘要
Molecular catalysts have attracted significant attention in photocatalytic CO2 reduction (PCR) due to well-defined structure and exceptional catalytic selectivity. However, they are still limited by recycling challenges and inherent instability. Forming an organic-inorganic composite can address these issues and enhance PCR performance simultaneously. Herein, we developed a flower-like Z-scheme heterojunction of cobalt porphyrin ([meso-tetra(4-sulfonatophenyl)porphyrin], CoTPPS) and ZnIn2S4 (ZIS). The optimized ZIS@CoTPPS exhibited a superior CO evolution rate of 388.26 μmol g−1 h−1, which is 8.96 times of pristine ZIS (43.32 μmol g−1 h−1). The superior PCR activity is contributed by the enhanced light absorption, and photoinduced charge separation facilitated by the Z-scheme structure and the cobalt active sites. Moreover, theoretical calculations confirm the heterojunction relies on a substantial interfacial coupling between the Zn atoms of ZIS and the sulfonic acid groups of CoTPPS through coordination assembly. This investigation affords a useful inspiration for consciously constructing novel ZIS-incorporated atomistic Z-scheme photocatalysts. © 2024 Elsevier B.V.
引用
收藏
相关论文
共 64 条
  • [1] Shindell D., Smith C.J., Nature, 573, pp. 408-411, (2019)
  • [2] Pavliuk M.V., Wrede S., Liu A.J., Brnovic A., Wang S.C., Axelsson M., Tian H.N., Chem. Soc. Rev., 51, pp. 6909-6935, (2022)
  • [3] Wu S., Pan Y., Lin H., Li L., Fu X., Long J., ChemSusChem, 14, pp. 4958-4972, (2021)
  • [4] Zhao Y., Niu Z., Zhao J., Xue L., Fu X., Long J., Electrochem. Energy Rev., 6, 14, (2023)
  • [5] Kuehnel M.F., Sahm C.D., Neri G., Lee J.R., Orchard K.L., Cowan A.J., Reisner E., Chem. Sci., 9, pp. 2501-2509, (2018)
  • [6] Zhang X., Cibian M., Call A., Yamauchi K., Sakai K., ACS Catal., 9, pp. 11263-11273, (2019)
  • [7] Fang S., Rahaman M., Bharti J., Reisner E., Robert M., Ozin G.A., Hu Y.H., Nat. Rev. Methods Prim., 3, (2023)
  • [8] Zhang H., Zhang P., Zhao J., Liu Y., Huang Y., Huang H., Yang C., Zhao Y., Wu K., Fu X., Jin S., Hou Y., Ding Z., Yuan R., Roeffaers M.B.J., Zhong S., Long J., Angew. Chem. Int. Ed., 60, pp. 16009-16018, (2021)
  • [9] Li X., Sun Y., Xu J., Shao Y., Wu J., Xu X., Pan Y., Ju H., Zhu J., Xie Y., Nat. Energy, 4, pp. 690-699, (2019)
  • [10] Gong J., Li C., Wasielewski M.R., Chem. Soc. Rev., 48, pp. 1862-1864, (2019)