Collateral Coupling between Superconducting Resonators: Fast High-Fidelity Generation of Qudit-Qudit Entanglement

被引:4
作者
Rosario P. [1 ]
Santos A.C. [1 ]
Villas-Boas C.J. [1 ]
Bachelard R. [1 ,2 ]
机构
[1] Departamento de Física, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - SP-310, SP, São Carlos
[2] Université Côte d'Azur, CNRS, Institut de Physique de Nice, Valbonne
基金
巴西圣保罗研究基金会;
关键词
All Open Access; Green;
D O I
10.1103/PhysRevApplied.20.034036
中图分类号
学科分类号
摘要
Superconducting circuits are highly controllable platforms to manipulate quantum states, which make them particularly promising for quantum information processing. We show here how the existence of a distance-independent interaction between microwave resonators coupled capacitively through a qubit offers an alternative control parameter toward this goal. This interaction is able to induce an idling point between resonant resonators, and its state-dependent nature allows one to control the flow of information between the resonators. The advantage of this scheme over the previous one is demonstrated through the generation of high-fidelity NOON states between the resonators, with a lower number of operations than previous schemes. Beyond superconducting circuits, our proposal could also apply to atomic lattices with clock transitions in optical cavities, for example. © 2023 American Physical Society.
引用
收藏
相关论文
共 71 条
[1]  
Blais A., Huang R.-S., Wallraff A., Girvin S. M., Schoelkopf R. J., Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A, 69, (2004)
[2]  
Koch J., Yu T. M., Gambetta J., Houck A. A., Schuster D. I., Majer J., Blais A., Devoret M. H., Girvin S. M., Schoelkopf R. J., Charge-insensitive qubit design derived from the cooper pair box, Phys. Rev. A, 76, (2007)
[3]  
Rigetti C., Devoret M., Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies, Phys. Rev. B, 81, (2010)
[4]  
Blais A., Grimsmo A. L., Girvin S. M., Wallraff A., Circuit quantum electrodynamics, Rev. Mod. Phys, 93, (2021)
[5]  
Arute F., Et al., Quantum supremacy using a programmable superconducting processor, Nature, 574, (2019)
[6]  
Wu Y., Et al., Strong Quantum Computational Advantage using a Superconducting Quantum Processor, Phys. Rev. Lett, 127, (2021)
[7]  
Zhang K., Li H., Zhang P., Yuan J., Chen J., Ren W., Wang Z., Song C., Wang D.-W., Wang H., Zhu S., Agarwal G. S., Scully M. O., Synthesizing Five-Body Interaction in a Superconducting Quantum Circuit, Phys. Rev. Lett, 128, (2022)
[8]  
Zhao P., Linghu K., Li Z., Xu P., Wang R., Xue G., Jin Y., Yu H., Quantum Crosstalk Analysis for Simultaneous Gate Operations on Superconducting Qubits, PRX Quantum, 3, (2022)
[9]  
Xu Y., Chu J., Yuan J., Qiu J., Zhou Y., Zhang L., Tan X., Yu Y., Liu S., Li J., Yan F., Yu D., High-Fidelity, High-Scalability Two-Qubit Gate Scheme for Superconducting Qubits, Phys. Rev. Lett, 125, (2020)
[10]  
Sheldon S., Magesan E., Chow J. M., Gambetta J. M., Procedure for systematically tuning up cross-talk in the cross-resonance gate, Phys. Rev. A, 93, (2016)