Topological state-space estimation of functional human brain networks

被引:0
作者
Chung, Moo K. [1 ]
Huang, Shih-Gu [2 ]
Carroll, Ian C. [3 ]
Calhoun, Vince D. [4 ]
Goldsmith, H. Hill [5 ,6 ]
机构
[1] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
[2] PPG ECG Signal, Taipei, Taiwan
[3] NYU, Grossman Sch Med, Dept Child & Adolescent Psychiat, New York, NY USA
[4] Emory Univ, Georgia State Univ, Georgia Inst Technol, Triinst Ctr Translat Res Neuroimaging & Data Sci T, Atlanta, GA USA
[5] Univ Wisconsin, Dept Psychol, Madison, WI USA
[6] Univ Wisconsin, Waisman Ctr, Madison, WI USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
GRAPH-THEORETICAL ANALYSIS; FRECHET MEANS; TEST-RETEST; CONNECTIVITY; HERITABILITY; INFERENCE; ROBUST; TWINS; SHAPE;
D O I
10.1371/journal.pcbi.1011869
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We introduce an innovative, data-driven topological data analysis (TDA) technique for estimating the state spaces of dynamically changing functional human brain networks at rest. Our method utilizes the Wasserstein distance to measure topological differences, enabling the clustering of brain networks into distinct topological states. This technique outperforms the commonly used k-means clustering in identifying brain network state spaces by effectively incorporating the temporal dynamics of the data without the need for explicit model specification. We further investigate the genetic underpinnings of these topological features using a twin study design, examining the heritability of such state changes. Our findings suggest that the topology of brain networks, particularly in their dynamic state changes, may hold significant hidden genetic information.
引用
收藏
页数:33
相关论文
共 113 条
  • [1] BARYCENTERS IN THE WASSERSTEIN SPACE
    Agueh, Martial
    Carlier, Guillaume
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) : 904 - 924
  • [2] Persistence homology of networks: methods and applications
    Aktas, Mehmet E.
    Akbas, Esra
    El Fatmaoui, Ahmed
    [J]. APPLIED NETWORK SCIENCE, 2019, 4 (01)
  • [3] Tracking Whole-Brain Connectivity Dynamics in the Resting State
    Allen, Elena A.
    Damaraju, Eswar
    Plis, Sergey M.
    Erhardt, Erik B.
    Eichele, Tom
    Calhoun, Vince D.
    [J]. CEREBRAL CORTEX, 2014, 24 (03) : 663 - 676
  • [4] A robust and unified framework for estimating heritability in twin studies using generalized estimating equations
    Arbet, Jaron
    McGue, Matt
    Basu, Saonli
    [J]. STATISTICS IN MEDICINE, 2020, 39 (27) : 3897 - 3913
  • [5] Network neuroscience
    Bassett, Danielle S.
    Sporns, Olaf
    [J]. NATURE NEUROSCIENCE, 2017, 20 (03) : 353 - 364
  • [6] Simplicial and topological descriptions of human brain dynamics
    Billings, Jacob
    Saggar, Manish
    Hlinka, Jaroslav
    Keilholz, Shella
    Petri, Giovanni
    [J]. NETWORK NEUROSCIENCE, 2021, 5 (02) : 549 - 568
  • [7] Bishop CM, 2006, Pattern recognition and machine learning, P1122, DOI [10.1007/978-0-387-45528-0, DOI 10.1007/978-0-387-45528-0]
  • [8] Heritability of Working Memory Brain Activation
    Blokland, Gabriella A. M.
    McMahon, Katie L.
    Thompson, Paul M.
    Martin, Nicholas G.
    de Zubicaray, Greig I.
    Wright, Margaret J.
    [J]. JOURNAL OF NEUROSCIENCE, 2011, 31 (30) : 10882 - 10890
  • [9] Complex brain networks: graph theoretical analysis of structural and functional systems
    Bullmore, Edward T.
    Sporns, Olaf
    [J]. NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) : 186 - 198
  • [10] Experience-Driven Differences in Childhood Cortisol Predict Affect-Relevant Brain Function and Coping in Adolescent Monozygotic Twins
    Burghy, Cory A.
    Fox, Michelle E.
    Cornejo, M. Daniela
    Stodola, Diane E.
    Sommerfeldt, Sasha L.
    Westbrook, Cecilia A.
    Van Hulle, Carol
    Schmidt, Nicole L.
    Goldsmith, H. Hill
    Davidson, Richard J.
    Birn, Rasmus M.
    [J]. SCIENTIFIC REPORTS, 2016, 6