Understanding the origins of reversible and hysteretic pathways of adsorption phase transitions in metal-organic frameworks

被引:1
作者
Parashar, Shivam [1 ]
Neimark, Alexander V. [1 ]
机构
[1] Rutgers State Univ, Dept Chem & Biochem Engn, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Metal-organic frameworks; Adsorption; Monte Carlo simulations; Phase transition; Hysteresis; Pore structure characterization; DENSITY-FUNCTIONAL THEORY; LIQUID TRANSITION; ARGON ADSORPTION; PORE-SIZE; EQUILIBRIA; SIMULATION; CARBON; CELL; CRITICALITY; DYNAMICS;
D O I
10.1016/j.jcis.2024.06.083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phase behavior of nanoconfined fluids adsorbed in metal-organic frameworks is of paramount importance for the design of advanced materials for energy and gas storage, separations, electrochemical devices, sensors, and drug delivery, as well as for the pore structure characterization. Phase transformations in adsorbed fluids often involve long-lasting metastable states and hysteresis that has been well-documented in gas adsorption-desorption and nonwetting fluid intrusion-extrusion experiments. However, theoretical prediction of the observed nanophase behavior remains a challenging problem. The mesoscopic canonical, or mesocanonical, ensemble (MCE) is devised to study the nanophase behavior under conditions of controlled fluctuations to stabilize metastable and labile states. Here, we implement and apply the MCE Monte Carlo (MCEMC) simulation scheme to predict the origins of reversible and hysteric adsorption phase transitions in a series of practical MOF materials, including IRMOF-1, ZIF-412, UiO-66, Cu-BTC, IRMOF-74-V, VII, and IX. The MCEMC method, called the gauge cell method, allows to produce Van der Waals type isotherms with distinctive swings around the phase transition regions. The constructed isotherms determine the positions of phase equilibrium and spinodals, as well as the nucleation barriers separating metastable states. We demonstrate the unique capabilities of the MCEMC method in quantitative predictions of experimental observations compared with the conventional grand canonical and canonical ensemble simulations. The MCEMC method is implemented in the open-source RASPA and LAMMPS software packages and recommended for studies of adsorption behavior and pore structure characterization of MOFs and other nanoporous materials.
引用
收藏
页码:700 / 710
页数:11
相关论文
共 50 条
  • [21] Metal-Organic Frameworks with Double Channels for Rapid and Reversible Adsorption of 1,2-Ethylenediamine and Gases
    Chen, Mao-Long
    Feng, Yan-Ying
    Wang, Si-Yuan
    Cheng, Yun-Hui
    Zhou, Zhao-Hui
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) : 1412 - 1418
  • [22] Tailoring Multiple Sites of Metal-Organic Frameworks for Highly Efficient and Reversible Ammonia Adsorption
    Wang, Zhenzhen
    Li, Zhiyong
    Zhang, Xia-Guang
    Xia, Qingchun
    Wang, Huiyong
    Wang, Chenlu
    Wang, Yanlei
    He, Hongyan
    Zhao, Yang
    Wang, Jianji
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (47) : 56025 - 56034
  • [23] Unusual Adsorption Behavior on Metal-Organic Frameworks
    Fairen-Jimenez, David
    Seaton, Nigel A.
    Duren, Tina
    LANGMUIR, 2010, 26 (18) : 14694 - 14699
  • [24] Flexibility in Metal-Organic Frameworks: A fundamental understanding
    Elsaidi, Sameh K.
    Mohamed, Mona H.
    Banerjee, Debasis
    Thallapally, Praveen K.
    COORDINATION CHEMISTRY REVIEWS, 2018, 358 : 125 - 152
  • [25] Computational screening of homochiral metal-organic frameworks for enantioselective adsorption
    Bao, Xiaoying
    Broadbelt, Linda J.
    Snurr, Randall Q.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2012, 157 : 118 - 123
  • [27] Recent Advances in the Use of Metal-Organic Frameworks for Dye Adsorption
    Au, Vonika Ka-Man
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [28] Adsorption microcalorimetry of small molecules on various metal-organic frameworks
    Saha, Arindom
    Strickland, Danny
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 126 (03) : 1747 - 1755
  • [29] A Family of Chiral Metal-Organic Frameworks
    Gedrich, Kristina
    Heitbaum, Maja
    Notzon, Andreas
    Senkovska, Irena
    Froehlich, Roland
    Getzschmann, Juergen
    Mueller, Uwe
    Glorius, Frank
    Kaskel, Stefan
    CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (07) : 2099 - 2106
  • [30] Stepped Behavior of Carbon Dioxide Adsorption in Metal-Organic Frameworks
    An Xiao-Hui
    Liu Da-Huan
    Zhong Chong-Li
    ACTA PHYSICO-CHIMICA SINICA, 2011, 27 (03) : 553 - 558