Equilibrium configurations and capillary interactions of Janus dumbbells and spherocylinders at fluid-fluid interfaces

被引:17
|
作者
Anzivino C. [1 ]
Chang F. [2 ]
Soligno G. [3 ]
Van Roij R. [4 ]
Kegel W.K. [2 ]
Dijkstra M. [1 ]
机构
[1] Soft Condensed Matter, Debye Institute for Nanomaterial Science, Utrecht University, Princetonplein 1, Utrecht
[2] Van't Hoff Laboratory for Physical and Colloidal Chemistry, Debye Institute for Nanomaterial Science, Utrecht University, Padualaan 8, Utrecht
[3] Condensed Matter and Interfaces, Debye Institute for Nanomaterial Science, Utrecht University, Princetonplein 1, Utrecht
[4] Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, Utrecht
关键词
D O I
10.1039/c8sm02361a
中图分类号
学科分类号
摘要
We numerically investigate the adsorption of a variety of Janus particles (dumbbells, elongated dumbbells and spherocylinders) at a fluid-fluid interface by using a numerical method that takes into account the interfacial deformations. We first determine the equilibrium configuration of a single adsorbed particle, and we find that the overall shape of the induced deformation field has a strong hexapolar mode while non-Janus particles of the same shape do not induce any interfacial deformation. We then calculate the capillary interactions between two Janus spherocylinders adsorbed at an interface. The hexapolar deformation field induces capillary attractions for laterally aligned Janus spherocylinders and repulsions for laterally anti-aligned ones. We also experimentally synthesize micrometer-sized charged Janus dumbbells and let them adsorb at a water-decane interface. After several hours we observe the formation of aggregates of dumbbells predominantly induced by interactions that appear to be capillary in nature. Our Janus dumbbells attach laterally and are all aligned, as predicted by our numerical calculations. © 2019 The Royal Society of Chemistry.
引用
收藏
页码:2638 / 2647
页数:9
相关论文
共 50 条
  • [21] Asymptotic modelling of fluid-fluid interfaces
    Gatignol, R
    DYNAMICS OF MULTIPHASE FLOWS ACROSS INTERFACES, 1996, 467 : 14 - 27
  • [22] Role of electrostatic interactions in the adsorption kinetics of nanoparticles at fluid-fluid interfaces
    Dugyala, Venkateshwar Rao
    Muthukuru, Jyothi Sri
    Mani, Ethayaraja
    Basavaraj, Madivala G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (07) : 5499 - 5508
  • [23] Ghost Fluid Method for Strong Shock Interactions Part 1: Fluid-Fluid Interfaces
    Sambasivan, Shiv Kumar
    UdayKumar, H. S.
    AIAA JOURNAL, 2009, 47 (12) : 2907 - 2922
  • [24] Mesoscale Simulations of Fluid-Fluid Interfaces
    Kruger, T.
    Frijters, S.
    Gunther, F.
    Kaoui, B.
    Harting, Jens
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING'14: TRANSACTIONS OF THE HIGH PERFORMANCE COMPUTING CENTER, STUTTGART (HLRS) 2014, 2015, : 545 - 558
  • [25] FLUID-FLUID INTERFACES IN STEADY MOTION
    ROSE, W
    NATURE, 1961, 191 (478) : 242 - &
  • [26] Dynamics of complex fluid-fluid interfaces
    Sagis, L. M. C.
    Fischer, P.
    Anderson, P. D.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (01): : 1 - 5
  • [27] Micro and macrorheology at fluid-fluid interfaces
    Samaniuk, Joseph R.
    Vermant, Jan
    SOFT MATTER, 2014, 10 (36) : 7023 - 7033
  • [28] Colloidal Particles at Fluid-Fluid Interfaces
    Binks, Bernard P.
    JOHNSON MATTHEY TECHNOLOGY REVIEW, 2019, 63 (01): : 32 - 33
  • [29] Microgel particles at the fluid-fluid interfaces
    Li, Zifu
    Ngai, To
    NANOSCALE, 2013, 5 (04) : 1399 - 1410
  • [30] Triblock Cylinders at Fluid-Fluid Interfaces
    Kang, Sung-Min
    Kumar, Ankit
    Choi, Chang-Hyung
    Tettey, Kwadwo E.
    Lee, Chang-Soo
    Lee, Daeyeon
    Park, Bum Jun
    LANGMUIR, 2014, 30 (44) : 13199 - 13204