A recyclable ZnIn2S4/PAN photocatalytic nanofiber membrane for boosting visible light hydrogen evolution in seawater without cocatalyst

被引:6
作者
Zhang, Yeke [1 ]
Niu, Liheng [1 ]
Li, Zenan [2 ]
Yang, Ting [1 ]
Liu, Yuqing [1 ]
Kang, Zhenhui [2 ,3 ]
机构
[1] Soochow Univ, Coll Text & Clothing Engn, 199 Renai Rd, Suzhou 215123, Peoples R China
[2] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, 199 Renai Rd, Suzhou 215123, Peoples R China
[3] Macau Univ Sci & Technol, MUST SUDA Joint Res Ctr Adv Funct Mat, Macao Inst Mat Sci & Engn MIMSE, Taipa 999078, Macao, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2024年 / 357卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Nanofiber; Photocatalysis; Hydrogen evolution; Seawater; Electrospinning; NACL; HETEROJUNCTION; DEGRADATION; WATER; AU;
D O I
10.1016/j.apcatb.2024.124300
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using seawater for photocatalytic hydrogen production is always a highly promising direction. However, traditional powdered photocatalysts encounter challenges like ion interference and difficulty in reuse. To address these issues, we have combined the photocatalyst ZnIn2S4 (ZIS) with a polymer (PAN) using electrospinning technology to produce a composite photocatalytic ZIS/PAN nanofiber membrane. In aqueous solution, the ZIS/ PAN nanofiber membrane achieves a maximum hydrogen evolution rate of approximately 1836 mu mol/g/h, which is 3.37 times that of ZIS particles. Additionally, cyanide groups on PAN fibers can capture a small portion of photogenerated electrons, which then adsorb ions from seawater, reducing their impact on the photocatalyst and demonstrating excellent seawater hydrogen production performance. At specific ion concentrations, the membrane's activity is 20 % higher than in aqueous solution. Moreover, it overcomes the limitations of powdered photocatalyst structures, enabling device integration that facilitates easy recovery and reuse.
引用
收藏
页数:14
相关论文
共 72 条
  • [1] Wang R., Yu W., Fang N., Wang P., Chu Y., Wu S., Liang J., Constructing fast charge separation of ZnIn<sub>2</sub>S<sub>4</sub> @CuCo<sub>2</sub>S<sub>4</sub> p-n heterojunction for efficient photocatalytic hydrogen energy recovery from quinolone antibiotic wastewater, Appl. Catal. B., 341, (2024)
  • [2] Men C., Chen L., Ji H., Qin Z., Su T., Synergistic effect of internal electric field and ligand-to-metal charge transfer in Z-scheme CuPc/ZnIn<sub>2</sub>S<sub>4</sub> for boosting photocatalytic hydrogen evolution, Chem. Eng. J., 473, (2023)
  • [3] Li Z., Sun Z., Zhang G., Combining heterogeneous photocatalysis and enzymatic catalysis via membrane: Conversion of biomass for H<sub>2</sub> production from water, Appl. Catal. B., 338, (2023)
  • [4] Zhang J., Hu W., Cao S., Piao L., Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting, Nano Res, 13, pp. 2313-2322, (2020)
  • [5] Yao Y., Gao X., Meng X., Recent advances on electrocatalytic and photocatalytic seawater splitting for hydrogen evolution, Int. J. Hydrog. Energy, 46, pp. 9087-9100, (2021)
  • [6] An H., Wang Y., Xiao X., Liu J., Ma Z., Gao T., Hong W., Zhao L., Wang H., Zhu Q., Chen S., Yin Z., Photocatalytic seawater splitting by 2D heterostructure of ZnIn<sub>2</sub>S<sub>4</sub>/WO<sub>3</sub> decorated with plasmonic Au for hydrogen evolution under visible light, J. Energy Chem., 93, pp. 55-63, (2024)
  • [7] Gao M., Connor P.K.N., Ho G.W., Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination, Energy Environ. Sci., 9, pp. 3151-3160, (2016)
  • [8] Cheng C., Zhang J., Zeng R., Xing F., Huang C., Schottky barrier tuning via surface plasmon and vacancies for enhanced photocatalytic H<sub>2</sub> evolution in seawater, Appl. Catal. B., 310, (2022)
  • [9] Li Y., He F., Peng S., Gao D., Lu G., Li S., Effects of electrolyte NaCl on photocatalytic hydrogen evolution in the presence of electron donors over Pt/TiO<sub>2</sub>, J. Mol. Catal. A: Chem., 341, pp. 71-76, (2011)
  • [10] Zhu C., Liu C., Fu Y., Gao J., Huang H., Liu Y., Kang Z., Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater, Appl. Catal. B., 242, pp. 178-185, (2019)