Unlocking the performance degradation of vanadium-based cathodes in aqueous zinc-ion batteries

被引:2
|
作者
Li, Weijian [1 ,2 ]
Jiang, Weikang [1 ,3 ]
Zhu, Kaiyue [1 ,2 ]
Wang, Zhengsen [1 ,4 ]
Xie, Weili [1 ,2 ]
Yang, Hanmiao [1 ,2 ]
Ma, Manxia [1 ,3 ]
Yang, Weishen [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
[4] Dalian Univ Technol, Dalian 116081, Peoples R China
关键词
Aqueous zinc-ion battery; Vanadium-based cathode; Capacity degradation; Zn-3(OH)(2)V2O7 center dot 2H(2)O; Dissolution mechanism; DISSOLUTION; LIFE;
D O I
10.1016/j.cej.2024.153786
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vanadium-based materials stand out as promising cathode options for rechargeable aqueous zinc-ion batteries (ZIBs), primarily because of their high capacity and superior rate capability. Nevertheless, the utilization of vanadium-based cathodes in advancing ZIBs toward commercial viability is hindered by their insufficient stability and a notable lack of comprehension of the mechanisms driving capacity degradation. Herein, we identified the formation of Zn-3(OH)(2)V2O7 center dot 2H(2)O (ZOV) as a key contributor to the capacity decay of vanadium-based cathodes. Through a series of compelling experiments, we revealed that dissolved vanadium ions react with zinc salts or layered zinc hydroxide (formed from H+ insertion) during the immersion or cycling of vanadium-based cathodes in aqueous electrolytes, ultimately leading to the formation of detrimental ZOV. Strong evidence shows that ZOV is inactive for Zn2+ storage owing to the presence of the pure tetrahedral frameworks of vanadium. To suppress the formation of ZOV, adjustments were made to the electrolyte composition, including the solvents and solutes. Consequently, the absence of ZOV enables an impressive capacity retention of 85 % in the ZnSO4 electrolyte after 150 cycles at 0.2 Ag-1. Overall, this study directly unlocks the capacity decay mechanism in vanadium-based cathodes and offers valuable insights for the design of innovative electrolytes and novel vanadium-based cathode materials for ZIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Metal-ion inserted vanadium oxide nanoribbons as high-performance cathodes for aqueous zinc-ion batteries
    Yu, Liangmin
    Yamauchi, Yusuke
    Wang, Jie
    Pang, Zhibin
    Ding, Bing
    Wang, Yanjian
    Xu, Li
    Zhou, Long
    Jiang, Xiaohui
    Yan, Xuefeng
    Hill, Jonathan P.
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [42] Recent Advances in Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries: from Fundamentals to Practical Applications
    Zheng, Wei
    Sun, Zhong-Hui
    Gu, Zhen-Yi
    Wu, Xing-Long
    Niu, Li
    ADVANCED MATERIALS TECHNOLOGIES, 2025,
  • [43] Ultrafast synthesis of vanadium-based oxides with crystalline-amorphous heterostructure for advanced aqueous zinc-ion batteries
    Yan, Duan
    Li, Hanbo
    Yang, Aomen
    Wang, Menglian
    Nie, Kaiqi
    Lv, Xiaoxin
    Deng, Jiujun
    CHEMICAL ENGINEERING JOURNAL, 2025, 504
  • [44] Zinc Vanadium Oxide Nanobelts as High-Performance Cathodes for Rechargeable Zinc-Ion Batteries
    Venkatesan, R.
    Bauri, Ranjit
    Mayuranathan, Kishore Kumar
    ENERGY & FUELS, 2022, 36 (14) : 7854 - 7864
  • [45] Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments
    Mathew, Vinod
    Sambandam, Balaji
    Kim, Seokhun
    Kim, Sungjin
    Park, Sohyun
    Lee, Seulgi
    Alfaruqi, Muhammad Hilmy
    Soundharrajan, Vaiyapuri
    Islam, Saiful
    Putro, Dimas Yunianto
    Hwang, Jang-Yeon
    Sun, Yang-Kook
    Kim, Jaekook
    ACS ENERGY LETTERS, 2020, 5 (07) : 2376 - 2400
  • [46] Application of vanadium phosphate in aqueous zinc-ion batteries
    Huang Q.-F.
    Pan R.-M.
    Peng H.-D.
    Wang Y.-Q.
    Shi X.-Y.
    Cai J.-J.
    Shao L.-Y.
    Sun Z.-P.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (07): : 1175 - 1186
  • [47] Advancing Vanadium MXene Cathodes: Strategic Enhancements for Superior Performance in Zinc-Ion Batteries
    Jenitha, M.
    Durgalakshmi, D.
    Kishore, M. R. Ashwin
    Balakumar, S.
    Rakkesh, R. Ajay
    ADVANCED SUSTAINABLE SYSTEMS, 2025,
  • [48] Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries
    Liu, Ying
    Wu, Xiang
    JOURNAL OF ENERGY CHEMISTRY, 2021, 56 : 223 - 237
  • [49] Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries
    Ying Liu
    Xiang Wu
    Journal of Energy Chemistry, 2021, 56 (05) : 223 - 237
  • [50] Unlocking the Potential of Disordered Rocksalts for Aqueous Zinc-Ion Batteries
    Ding, Junwei
    Du, Zhiguo
    Li, Bin
    Wang, Lizhen
    Wang, Shiwen
    Gong, Yongji
    Yang, Shubin
    ADVANCED MATERIALS, 2019, 31 (44)