Unlocking the performance degradation of vanadium-based cathodes in aqueous zinc-ion batteries

被引:2
|
作者
Li, Weijian [1 ,2 ]
Jiang, Weikang [1 ,3 ]
Zhu, Kaiyue [1 ,2 ]
Wang, Zhengsen [1 ,4 ]
Xie, Weili [1 ,2 ]
Yang, Hanmiao [1 ,2 ]
Ma, Manxia [1 ,3 ]
Yang, Weishen [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
[4] Dalian Univ Technol, Dalian 116081, Peoples R China
关键词
Aqueous zinc-ion battery; Vanadium-based cathode; Capacity degradation; Zn-3(OH)(2)V2O7 center dot 2H(2)O; Dissolution mechanism; DISSOLUTION; LIFE;
D O I
10.1016/j.cej.2024.153786
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vanadium-based materials stand out as promising cathode options for rechargeable aqueous zinc-ion batteries (ZIBs), primarily because of their high capacity and superior rate capability. Nevertheless, the utilization of vanadium-based cathodes in advancing ZIBs toward commercial viability is hindered by their insufficient stability and a notable lack of comprehension of the mechanisms driving capacity degradation. Herein, we identified the formation of Zn-3(OH)(2)V2O7 center dot 2H(2)O (ZOV) as a key contributor to the capacity decay of vanadium-based cathodes. Through a series of compelling experiments, we revealed that dissolved vanadium ions react with zinc salts or layered zinc hydroxide (formed from H+ insertion) during the immersion or cycling of vanadium-based cathodes in aqueous electrolytes, ultimately leading to the formation of detrimental ZOV. Strong evidence shows that ZOV is inactive for Zn2+ storage owing to the presence of the pure tetrahedral frameworks of vanadium. To suppress the formation of ZOV, adjustments were made to the electrolyte composition, including the solvents and solutes. Consequently, the absence of ZOV enables an impressive capacity retention of 85 % in the ZnSO4 electrolyte after 150 cycles at 0.2 Ag-1. Overall, this study directly unlocks the capacity decay mechanism in vanadium-based cathodes and offers valuable insights for the design of innovative electrolytes and novel vanadium-based cathode materials for ZIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Structural perspective on revealing energy storage behaviors of silver vanadate cathodes in aqueous zinc-ion batteries
    Guo, Shan
    Fang, Guozhao
    Liang, Shuquan
    Chen, Minghui
    Wu, Xianwen
    Zhou, Jiang
    ACTA MATERIALIA, 2019, 180 : 51 - 59
  • [42] Challenges and strategies for ultrafast aqueous zinc-ion batteries
    Zhu, Qiao-Nan
    Wang, Zhen-Ya
    Wang, Jia-Wei
    Liu, Xiao-Yu
    Yang, Dan
    Cheng, Li-Wei
    Tang, Meng-Yao
    Qin, Yu
    Wang, Hua
    RARE METALS, 2021, 40 (02) : 309 - 328
  • [43] Crystalline and amorphous MnO2 cathodes with open framework enable high-performance aqueous zinc-ion batteries
    Huang, Chunfu
    Wu, Cong
    Zhang, Zilu
    Xie, Yunyun
    Li, Yang
    Yang, Caihong
    Wang, Hai
    FRONTIERS OF MATERIALS SCIENCE, 2021, 15 (02) : 202 - 215
  • [44] Challenges and strategies for ultrafast aqueous zinc-ion batteries
    Qiao-Nan Zhu
    Zhen-Ya Wang
    Jia-Wei Wang
    Xiao-Yu Liu
    Dan Yang
    Li-Wei Cheng
    Meng-Yao Tang
    Yu Qin
    Hua Wang
    Rare Metals, 2021, 40 : 309 - 328
  • [45] Key Issues and Strategies of Aqueous Zinc-Ion Batteries
    Liu, Yi
    Wang, Huibo
    Li, Qingyuan
    Zhou, Lingfeng
    Zhao, Pengjun
    Holze, Rudolf
    ENERGIES, 2023, 16 (21)
  • [46] Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries
    Liu, Gangyuan
    Xiao, Yao
    Zhang, Wenwei
    Tang, Wen
    Zuo, Chunli
    Zhang, Peiping
    Dong, Shijie
    Luo, Ping
    NANOTECHNOLOGY, 2021, 32 (31)
  • [47] Biomimetic Superstructured Interphase for Aqueous Zinc-Ion Batteries
    Ai, Yan
    Yang, Chaochao
    Yin, Ziqing
    Wang, Tong
    Gai, Tianyu
    Feng, Jiayou
    Li, Kailin
    Zhang, Wei
    Li, Yefei
    Wang, Fei
    Chao, Dongliang
    Wang, Yonggang
    Zhao, Dongyuan
    Li, Wei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (22) : 15496 - 15505
  • [48] Achieving Stable Molybdenum Oxide Cathodes for Aqueous Zinc-Ion Batteries in Water-in-Salt Electrolyte
    Wang, Lei
    Yan, Shan
    Quilty, Calvin D.
    Kuang, Jason
    Dunkin, Mikaela R.
    Ehrlich, Steven N.
    Ma, Lu
    Takeuchi, Kenneth J.
    Takeuchi, Esther S.
    Marschilok, Amy C.
    ADVANCED MATERIALS INTERFACES, 2021, 8 (09)
  • [49] Crystalline and amorphous MnO2 cathodes with open framework enable high-performance aqueous zinc-ion batteries
    Chunfu Huang
    Cong Wu
    Zilu Zhang
    Yunyun Xie
    Yang Li
    Caihong Yang
    Hai Wang
    Frontiers of Materials Science, 2021, 15 : 202 - 215
  • [50] Ultra-stable zinc-ion batteries by suppressing vanadium dissolution via multiple ion-bonded vanadate cathodes
    Yu, Huimin
    Whittle, Jason David
    Losic, Dusan
    Ma, Jun
    APPLIED PHYSICS REVIEWS, 2022, 9 (01)