Efficient Concatenated Bosonic Code for Additive Gaussian Noise

被引:1
作者
Fukui K. [1 ]
Matsuura T. [2 ]
Menicucci N.C. [2 ]
机构
[1] Department of Applied Physics, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
[2] Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, 3000, VIC
基金
澳大利亚研究理事会; 日本学术振兴会;
关键词
Bosons - Concatenated codes - Decoding - Gaussian noise (electronic) - Quantum optics;
D O I
10.1103/PhysRevLett.131.170603
中图分类号
学科分类号
摘要
Bosonic codes offer noise resilience for quantum information processing. Good performance often comes at a price of complex decoding schemes, limiting their practicality. Here, we propose using a Gottesman-Kitaev-Preskill code to detect and discard error-prone qubits, concatenated with a quantum parity code to handle the residual errors. Our method employs a simple linear-time decoder that nevertheless offers significant performance improvements over the standard decoder. Our Letter may have applications in a wide range of quantum computation and communication scenarios. © 2023 American Physical Society.
引用
收藏
相关论文
共 75 条
[1]  
Albert V. V., Noh K., Duivenvoorden K., Young D. J., Brierley R., Reinhold P., Vuillot C., Li L., Shen C., Girvin S., Performance and structure of single-mode bosonic codes, Phys. Rev. A, 97, (2018)
[2]  
Knill E., Laflamme R., Milburn G. J., A scheme for efficient quantum computation with linear optics, Nature (London), 409, (2001)
[3]  
Kok P., Munro W. J., Nemoto K., Ralph T. C., Dowling J. P., Milburn G. J., Linear optical quantum computing with photonic qubits, Rev. Mod. Phys, 79, (2007)
[4]  
Rudolph T., Why I am optimistic about the silicon-photonic route to quantum computing, APL Photonics, 2, (2017)
[5]  
Kjaergaard M., Schwartz M. E., Braumuller J., Krantz P., Wang J. I.-J., Gustavsson S., Oliver W. D., Superconducting qubits: Current state of play, Annu. Rev. Condens. Matter Phys, 11, (2020)
[6]  
Koch J., Yu T. M., Gambetta J., Houck A. A., Schuster D., Majer J., Blais A., Devoret M. H., Girvin S. M., Schoelkopf R. J., Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A, 76, (2007)
[7]  
Schreier J. A., Houck A. A., Koch J., Schuster D. I., Johnson B. R., Chow J. M., Gambetta J. M., Majer J., Frunzio L., Devoret M. H., Suppressing charge noise decoherence in superconducting charge qubits, Phys. Rev. B, 77, (2008)
[8]  
Ofek N., Petrenko A., Heeres R., Reinhold P., Leghtas Z., Vlastakis B., Liu Y., Frunzio L., Girvin S., Jiang L., Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature (London), 536, (2016)
[9]  
Hu L., Ma Y., Cai W., Mu X., Xu Y., Wang W., Wu Y., Wang H., Song Y., Zou C.-L., Quantum error correction and universal gate set operation on a binomial bosonic logical qubit, Nat. Phys, 15, (2019)
[10]  
Arute F., Arya K., Babbush R., Bacon D., Bardin J. C., Barends R., Biswas R., Boixo S., Brandao F. G., Buell D. A., Quantum supremacy using a programmable superconducting processor, Nature (London), 574, (2019)