A 7.21-bit ENOB 100MS/s 1.51mW inverter based pipelined adc with digital calibration for breast cancer detection system

被引:1
作者
Masui Y. [1 ]
Nishimiya T. [1 ]
Uemi A. [1 ]
Toya A. [1 ]
Kikkawa T. [1 ]
机构
[1] Department of Electronics and Computer Engineering, Hiroshima Institute of Technology, 2-1-1, Miyake, Saeki-ku, Hiroshima
来源
IEEJ Transactions on Electronics, Information and Systems | 2020年 / 140卷 / 06期
关键词
ADC; Digital calibration; High-speed operation; Medical applications; Pipelined;
D O I
10.1541/ieejeiss.140.585
中图分类号
学科分类号
摘要
A new pipelined ADC architecture is proposed for medical applications. We evaluated the proposed ADC architecture using a 180 nm CMOS-process. The designed pipelined ADC achieved 58.24 dB SFDR and 45.14 dB SNDR (ENOB = 7.21 bit) at a sampling frequency of 100 MHz and 2.0 V power supply voltage. In addition, the ADC achieved the highest FOM of 70.62 fJ/conv.step when the power supply voltage was 1.6 V. © 2020 The Institute of Electrical Engineers of Japan.
引用
收藏
页码:585 / 591
页数:6
相关论文
共 26 条
  • [1] Lazebnik M., McCartney L., Popovic D., Watkins C.B., Lindstrom M.J., Harter J., Sewall S., Magliocco A., Booske J.H., Okoniewski M., Hagness S.C., A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries, Phys. Med. Biol., 52, pp. 2637-2656, (2007)
  • [2] Fear E.C., Li X., Hagness S.C., Stuchly M., Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions, IEEE Transactions on Biomedical Engineering, 49, 8, pp. 812-822, (2002)
  • [3] Bassi M., Caruso M., Bevilacqua A., Neviani A., A 65-nm CMOS 1.75–15 GHz stepped frequency radar receiver for early diagnosis of breast cancer, IEEE Journal of Solid-State Circuits, 48, 7, pp. 1741-1750, (2013)
  • [4] Masui Y., Toya A., Sugawara M., Maeda T., Ono M., Murasaka Y., Iwata A., Kikkawa T., Gaussian monocycle pulse generator with calibration circuit for breast cancer detection, Proc. 2018 IEEE Biomedical Circuits and Systems Conference, pp. 1-4, (2018)
  • [5] Masui Y., Toya A., Sugawara M., Maeda T., Ono M., Murasaka Y., Iwata A., Kikkawa T., Differential equivalent time sampling receiver for breast cancer detection, Proc. 2017 IEEE Biomedical Circuits and Systems Conference, pp. 1-4, (2017)
  • [6] Toya A., Masui Y., Sugawara M., Maeda T., Ono M., Murasaka Y., Iwata A., Kikkawa T., Investigation of phase noise and jitter in CMOS sampling clock generation circuits for time-domain breast cancer detection system, Proc. 2017 IEEE Biomedical Circuits and Systems Conference, pp. 1-4, (2017)
  • [7] Azhari A., Sugitani T., Xiao X., Kikkawa T., DC–17-GHz CMOS single-pole-eight-throw switching matrix for radar-based image detection, Japanese Journal of Applied Physics, 55, 12, (2016)
  • [8] Sugitani T., Kubota S., Hafiz M., Xiao X., Kikkawa T., Three-dimensional confocal imaging for breast cancer detection using CMOS Gaussian monocycle pulse transmitter and 4 × 4 ultra wideband antenna array with impedance matching layer, Japanese Journal of Applied Physics, 53, 4 S, (2014)
  • [9] Song H., Azhari A., Xiao X., Suematsu E., Watanabe H., Kikkawa T., Microwave imaging using CMOS integrated circuits with rotating 4 × 4 antenna array on a breast phantom, International Journal of Antennas and Propagation, 2017, (2017)
  • [10] Kapusta R., Et al., A 14b 80 MS/s SAR ADC with 73.6 dB SNDR in 65 nm CMOS, IEEE Journal of Solid-State Circuits, 48, 12, pp. 3059-3066, (2013)