Machine Learning Regression Techniques for the Modeling of Complex Systems: An Overview

被引:19
|
作者
Trinchero R. [1 ]
Canavero F. [1 ]
机构
[1] Politecnico di Torino, Department of Electronics and Telecommunications, Torino
关键词
Gaussian Process regression; Least-Square Support Vector Machine; Machine Learning; Support Vector Machine; Surrogate model; uncertainty quantification;
D O I
10.1109/MEMC.2021.9705310
中图分类号
学科分类号
摘要
Recently, machine learning (ML) techniques have gained widespread diffusion, since they have been successfully applied in several research fields. This paper investigates the effectiveness of advanced ML regressions in two EMC applications. Specifically, support vector machine, least-squares support vector machine and Gaussian process regressions are adopted to construct accurate and fast-to-evaluate surrogate models able to predict the output variable of interest as a function of the system parameters. The resulting surrogates, built from a limited set of training samples, can be suitably adopted for both uncertainty quantification and optimization purposes. The accuracy and the key features of each of the considered machine learning techniques are investigated by comparing their predictions with the ones provided by either circuital simulations or measurements. © 2012 IEEE.
引用
收藏
页码:71 / 79
页数:8
相关论文
共 50 条
  • [1] An overview on recent machine learning techniques for Port Hamiltonian systems
    Cherifi, Karim
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 411
  • [2] An overview of machine learning techniques in constraint solving
    Andrei Popescu
    Seda Polat-Erdeniz
    Alexander Felfernig
    Mathias Uta
    Müslüm Atas
    Viet-Man Le
    Klaus Pilsl
    Martin Enzelsberger
    Thi Ngoc Trang Tran
    Journal of Intelligent Information Systems, 2022, 58 : 91 - 118
  • [3] An overview of machine learning techniques in constraint solving
    Popescu, Andrei
    Polat-Erdeniz, Seda
    Felfernig, Alexander
    Uta, Mathias
    Atas, Muslum
    Viet-Man Le
    Pilsl, Klaus
    Enzelsberger, Martin
    Thi Ngoc Trang Tran
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2022, 58 (01) : 91 - 118
  • [4] Machine Learning Techniques for Modeling and Performance Analysis of Interconnects
    Tripathi, Jai Narayan
    Vaghasiya, Heman
    Junjariya, Dinesh
    Chordia, Aksh
    IEEE OPEN JOURNAL OF NANOTECHNOLOGY, 2021, 2 : 178 - 190
  • [5] Machine Learning for Modeling Underwater Vehicle Dynamics: Overview and Insights
    Macatangay, Xan
    Gabriel, Sargon A.
    Hoseinnezhad, Reza
    Fowler, Anthony
    Bab-Hadiashar, Alireza
    IEEE ACCESS, 2024, 12 : 139486 - 139504
  • [6] Machine learning techniques for mortality modeling
    Deprez P.
    Shevchenko P.V.
    Wüthrich M.V.
    European Actuarial Journal, 2017, 7 (2) : 337 - 352
  • [7] Machine learning in complex systems
    Axtell, Travis W.
    Overbey, Lucas A.
    Woerner, Lisa
    GROUND/AIR MULTISENSOR INTEROPERABILITY, INTEGRATION, AND NETWORKING FOR PERSISTENT ISR IX, 2018, 10635
  • [8] Supervised Machine Learning Techniques: An Overview with Applications to Banking
    Hu, Linwei
    Chen, Jie
    Vaughan, Joel
    Aramideh, Soroush
    Yang, Hanyu
    Wang, Kelly
    Sudjianto, Agus
    Nair, Vijayan N.
    INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (03) : 573 - 604
  • [9] Machine learning in marine ecology: an overview of techniques and applications
    Rubbens, Peter
    Brodie, Stephanie
    Cordier, Tristan
    Destro Barcellos, Diogo
    Devos, Paul
    Fernandes-Salvador, Jose A.
    Fincham, Jennifer, I
    Gomes, Alessandra
    Handegard, Nils Olav
    Howell, Kerry
    Jamet, Cedric
    Kartveit, Kyrre Heldal
    Moustahfid, Hassan
    Parcerisas, Clea
    Politikos, Dimitris
    Sauzede, Raphaelle
    Sokolova, Maria
    Uusitalo, Laura
    Van den Bulcke, Laure
    van Helmond, Aloysius T. M.
    Watson, Jordan T.
    Welch, Heather
    Beltran-Perez, Oscar
    Chaffron, Samuel
    Greenberg, David S.
    Kuehn, Bernhard
    Kiko, Rainer
    Lo, Madiop
    Lopes, Rubens M.
    Moeller, Klas Ove
    Michaels, William
    Pala, Ahmet
    Romagnan, Jean-Baptiste
    Schuchert, Pia
    Seydi, Vahid
    Villasante, Sebastian
    Malde, Ketil
    Irisson, Jean-Olivier
    ICES JOURNAL OF MARINE SCIENCE, 2023, 80 (07) : 1829 - 1853
  • [10] Modeling Cyber-Attribution Using Machine Learning Techniques
    Alkaabi, Maimonah
    Olatunji, Sunday O.
    30TH INTERNATIONAL CONFERENCE ON COMPUTER THEORY AND APPLICATIONS (ICCTA 2020), 2020, : 10 - 15