Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network

被引:0
|
作者
Wang Y. [1 ]
Chen Y. [1 ]
Han Z. [1 ,2 ,3 ]
Zhou D. [1 ,2 ,3 ]
Bao Y. [1 ,2 ,3 ]
机构
[1] School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai
[2] State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai
[3] Key Laboratory of Hydrodynamics of the Ministry of Education, Shanghai Jiao Tong University, Shanghai
来源
Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University | 2021年 / 55卷 / 09期
关键词
Deep learning; Mutual information (MI); Recurrent neural network (RNN); Wind energy; Wind farm; Wind speed forecasting;
D O I
10.16183/j.cnki.jsjtu.2020.433
中图分类号
学科分类号
摘要
The volatility and randomness of wind speed have caused potential safety hazards to wind power grid integration. Improving wind speed forecasting is crucial to the stability of wind power systems and the development of wind energy. A novel short-term wind speed forecasting model (MI-RNN) was proposed based on mutual information (MI) and recursive neural network (RNN). In this model, the MI theory was introduced to select the optimal length of historical wind speed sequence (τ), and the method of using each τ step to forecast wind speed at the next time point was adopted to input the historical wind speed data into RNN for model training. The final wind speed forecasting result was output by the trained RNN model. Besides, the MI-RNN model was applied to the wind speed dataset collected from a wind farm and the forecasting accuracy was compared with that of the traditional wind forecasting methods. The results show that the MI-RNN model has achieved a higher forecasting accuracy compared with the commonly used wind farm wind speed forecasting methods, and can accurately forecast the future wind direction, which is expected to be applied to wind speed forecasting of wind farms with spatial dimensions. © 2021, Shanghai Jiao Tong University Press. All right reserved.
引用
收藏
页码:1080 / 1086
页数:6
相关论文
共 15 条
  • [1] ZHANG Z D, YE L, QIN H, Et al., Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression, Applied Energy, 247, pp. 270-284, (2019)
  • [2] CHEN J, ZENG G Q, ZHOU W, Et al., Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization, Energy Conversion and Management, 165, pp. 681-695, (2018)
  • [3] KHOSRAVI A, MACHADO L, NUNES R., Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil, Applied Energy, 224, pp. 550-566, (2018)
  • [4] MORENO S R, LEANDRO D S C., Wind speed forecasting approach based on Singular Spectrum Analysis and Adaptive Neuro Fuzzy Inference System, Renewable Energy, 126, pp. 736-754, (2018)
  • [5] ZHANG Chi, Research on some issues of short-term wind speed forecasting for wind farms, (2017)
  • [6] JAHANGIR H, GOLKAR M A, ALHAMELI F, Et al., Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN, Sustainable Energy Technologies and Assessments, 38, (2020)
  • [7] SANTHOSH M, VENKAIAH C, KUMAR D M V., Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction, Energy Conversion and Management, 168, pp. 482-493, (2018)
  • [8] FAN Manping, ZHOU Dong, Shortterm wind speed prediction based on improved particle swarm optimization LS-SVM, Journal of Electric Power, 35, 2, pp. 123-128, (2020)
  • [9] HOCHREITER S, SCHMIDHUBER J., Long short-term memory, Neural Computation, 9, 8, pp. 1735-1780, (1997)
  • [10] TRAPPENBERG T, OUYANG J, BACK A., Input variable selection: Mutual information and linear mixing measures, IEEE Transactions on Knowledge and Data Engineering, 18, 1, pp. 37-46, (2006)