A bayesian inference-based approach to empirical training of strongly coupled constituent models

被引:1
作者
Flynn G.S. [1 ]
Chodora E. [2 ]
Atamturktur S. [3 ]
Brown D.A. [4 ]
机构
[1] Los Alamos National Laboratory, Los Alamos, 87545, NM
[2] Mechanical Engineering, Clemson University, Clemson, 29634, SC
[3] Architectural Engineering, The Pennsylvania State University, State College, 16801, PA
[4] Mathematical and Statistical Sciences, Clemson University, Clemson, 29634, SC
来源
Journal of Verification, Validation and Uncertainty Quantification | 2019年 / 4卷 / 02期
关键词
Elasto-plastic deformation; Empirical surrogate; Gaussian process model; Model calibration; Multiphysics; Multiscale; Statistical inference;
D O I
10.1115/1.4044804
中图分类号
学科分类号
摘要
Partitioned analysis enables numerical representation of complex systems through the coupling of smaller, simpler constituent models, each representing a different phenomenon, domain, scale, or functional component. Through this coupling, inputs and outputs of constituent models are exchanged in an iterative manner until a converged solution satisfies all constituents. In practical applications, numerical models may not be available for all constituents due to lack of understanding of the behavior of a constituent and the inability to conduct separate-effect experiments to investigate the behavior of the constituent in an isolated manner. In such cases, empirical representations of missing constituents have the opportunity to be inferred using integral-effect experiments, which capture the behavior of the system as a whole. Herein, we propose a Bayesian inferencebased approach to estimate missing constituent models from available integral-effect experiments. Significance of this novel approach is demonstrated through the inference of a material plasticity constituent integrated with a finite element model to enable efficient multiscale elasto-plastic simulations. © 2019 by ASME.
引用
收藏
相关论文
共 35 条
  • [1] Larson J. W., Ten Organising Principles for Coupling in Multiphysics and Multiscale Models, ANZIAM J, 48, pp. 1090-1111, (2009)
  • [2] Knezevic M., McCabe R. J., Lebensohn R. A., Tom_e C. N., Mihaila B., Finite Element Implementation of a Self-Consistent Polycrystal Plasticity Model: Application to a-Uranium, Evolution, 100, (2012)
  • [3] Segurado J., Lebensohn R. A., LLorca J., Tom_e C. N., Multiscale Modeling of Plasticity Based on Embedding the Viscoplastic Self-Consistent Formulation in Implicit Finite Elements, Int. J. Plast, 28, 1, pp. 124-140, (2012)
  • [4] Felippa C. A., Park K. C., Farhat C., Partitioned Analysis of Coupled Mechanical Systems, Comput. Methods Appl. Mech. Eng, 190, 24-25, pp. 3247-3270, (2001)
  • [5] Unal C., Williams B., Hemez F., Atamturktur S. H., McClure P., Improved Best Estimate Plus Uncertainty Methodology, Including Advanced Validation Concepts, to License Evolving Nuclear Reactors, Nucl. Eng. Des, 241, 5, pp. 1813-1833, (2011)
  • [6] Keyes D. E., McInnes L. C., Woodward C., Gropp W., Myra E., Pernice M., Bell J., Brown J., Clo A., Connors J., Constantinescu E., Estep D., Evans K., Farhat C., Hakim A., Hammond G., Hansen G., Hill J., Isaac T., Jiao X., Jordan K., Kaushik D., Kaxiras E., Koniges A., Lee K., Lott A., Lu Q., Magerlein J., Maxwell R., McCourt M., Mehl M., Pawlowski R., Randles A. P., Reynolds D., Riviere B., R€ude U., Scheibe T., Shadid J., Sheehan B., Shephard M., Siegel A., Smith B., Tang X., Wilson C., Wohlmu
  • [7] Asayama T., Hasebe S., Weld Metal Creep-Fatigue Life Prediction by Modeling the Microstructure Degradation Due to the Exposure to High Temperature and Load, Nucl. Eng. Des, 195, 2, pp. 197-210, (2000)
  • [8] Dawson P. R., Computational Crystal Plasticity, Int. J. Solids Struct, 37, 1-2, pp. 115-130, (2000)
  • [9] McDowell D. L., A Perspective on Trends in Multiscale Plasticity, Int. J. Plast, 26, 9, pp. 1280-1309, (2010)
  • [10] Roters F., Eisenlohr P., Hantcherli L., Tjahjanto D. D., Bieler T. R., Raabe D., Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications, Acta Mater, 58, 4, pp. 1152-1211, (2010)