The effect of gas jets on the explosion dynamics of hydrogen-air mixtures

被引:0
|
作者
Chang, Xinyu [1 ]
Bai, Chunhua [1 ]
Zhang, Bo [2 ]
机构
[1] Beijing Institute of Technology, State Key Laboratory of Explosion Science and Technology, Beijing,100081, China
[2] Shanghai Jiao Tong University, School of Aeronautics and Astronautics, Shanghai,200240, China
基金
上海市自然科学基金;
关键词
Air - Carbon dioxide - Hydrogen - Inert gases - Mixtures - Pressure effects - Turbulence;
D O I
暂无
中图分类号
学科分类号
摘要
In the real scenarios, explosions generally occur under turbulent environments. In this study, the turbulence is generated by introducing inert gas jets, and the interaction between jet turbulence and inert gas dilution is extremely complicated under different conditions. Therefore, the aim of this study is to investigate the influence of gas jets on explosion behavior of hydrogen-air mixtures with various hydrogen concentrations (from 10% to 70%) at different initial pressures (i.e., 50 kPa, 100 kPa, 150 kPa, 200 kPa), and a series of experiments are conducted in a standard 20 L spherical explosion chamber at environmental temperature 300 K. The effect of gas jets on explosions of hydrogen-air mixtures with various hydrogen concentrations at initial pressure of 100 kPa is first studied, the experimental results illustrate that jet has minor impact on the explosion behavior when hydrogen concentration ranges from 20% to 70%. However, the enhancement effect of gas jets on the reaction process is significant as hydrogen concentration is 10%. Therefore, the impact of various gas jets (i.e., CO2, and N2) on explosion behavior at different initial pressure is mainly examined as hydrogen-air mixtures are near the lower explosive limits. It is found that the enhancing effect of gas jets on explosion behavior is profound for hydrogen-air mixtures at higher initial pressure, however, the suppression effect caused by the higher concentration of inert gas could balance the promoting effect by turbulence at lower initial pressure. Moreover, the encouraging effect of CO2 jet is more apparent than that of N2 jet when jet duration time is relatively short, because the turbulence intensity induced by CO2 is greater due to its larger molecular weight. © 2022 The Institution of Chemical Engineers
引用
收藏
页码:384 / 394
相关论文
共 50 条
  • [1] The effect of gas jets on the explosion dynamics of hydrogen-air mixtures
    Chang, Xinyu
    Bai, Chunhua
    Zhang, Bo
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 162 : 384 - 394
  • [2] The effect of ignition location on explosion venting of hydrogen-air mixtures
    Cao, Y.
    Guo, J.
    Hu, K.
    Xie, L.
    Li, B.
    SHOCK WAVES, 2017, 27 (04) : 691 - 697
  • [3] Sound generated by explosion of hydrogen-air mixtures
    Matsumura, Tomoharu
    Kuroda, Eishi
    Wakabayash, Kunihiko
    Nakayama, Yoshio
    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS, 2020, 81 (06) : 149 - 156
  • [4] Simulation of turbulent explosion of hydrogen-air mixtures
    Ahmed, I.
    Swaminathan, N.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (17) : 9562 - 9572
  • [5] Effect of ignition locations on vented explosion of premixed hydrogen-air mixtures
    Cao Y.
    Guo J.
    Hu K.
    Shao K.
    Yang F.
    Baozha Yu Chongji/Explosion and Shock Waves, 2016, 36 (06): : 847 - 852
  • [6] Explosion dynamics of hydrogen-air mixtures in a flat vessel filled with annular obstacles
    Wang, Lu-Qing
    Ma, Hong-Hao
    FUEL, 2021, 298
  • [7] Explosion dynamics of hydrogen-air mixtures in a flat vessel filled with annular obstacles
    Wang, Lu-Qing
    Ma, Hong-Hao
    Fuel, 2021, 298
  • [8] Explosion Characteristics of Hydrogen-Air Mixtures in a Spherical Vessel
    Jo, Young-Do
    Crowl, Daniel A.
    PROCESS SAFETY PROGRESS, 2010, 29 (03) : 216 - 223
  • [9] VENTED EXPLOSION OF HYDROGEN-AIR MIXTURES IN A LARGE VOLUME
    KUMAR, RK
    DEWIT, WA
    GREIG, DR
    COMBUSTION SCIENCE AND TECHNOLOGY, 1989, 66 (4-6) : 251 - 266
  • [10] Explosion hazard of hydrogen-air mixtures in the large volumes
    Petukhov, V. A.
    Naboko, I. M.
    Fortov, V. E.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (14) : 5924 - 5931