Domain-Centroid-Guided Progressive Teacher-Based Knowledge Distillation for Source-Free Domain Adaptation of Histopathological Images

被引:0
|
作者
Cheng K.-S. [1 ]
Zhang Q.-W. [1 ]
Tsai H.-W. [2 ]
Li N.-T. [3 ]
Chung P.-C. [4 ]
机构
[1] National Cheng Kung University, Department of Biomedical Engineering, Tainan
[2] National Cheng Kung University Hospital, Department of Pathology, Tainan
[3] National Cheng Kung University, Department of Computer and Communication Engineering, Tainan
[4] National Cheng Kung University, Department of Electrical Engineering, Tainan
来源
IEEE Transactions on Artificial Intelligence | 2024年 / 5卷 / 04期
关键词
Histopathology image; knowledge distillation; progressive teacherâ€Âstudent adaption; source-free domain adaptation;
D O I
10.1109/TAI.2023.3305331
中图分类号
学科分类号
摘要
Deep neural networks are commonly used for histopathology image analysis. However, such data-driven models are sensitive to style variances across scanners and suffer a significant performance degradation as a result. Although the network performance can be improved by using domain adaptation methods, the source dataset required to perform the adaptation process is generally unavailable. This study shows that the performance degradation of deep neural networks when applied to histopathology images is the result partly of the wide distribution of the features generated when inferring the features of the target model using the feature centers of the source model. To address this problem, a teacher-student framework, designated as domain-centroid-guided progressive teacher-based knowledge distillation (DCGP-KD), is proposed which aims to learn compact target features in order to provide more accurate pseudo labels for the target model without the need for the original source dataset. In the proposed framework, the class-wise feature centers of the source data are progressively adapted to the distribution of the target data, and compact target features are then generated by gathering the features based on their class-wise centers. A strategy is additionally proposed to prevent catastrophic forgetting during the progressive adaption process. Finally, a prediction consistency loss function is introduced to improve the robustness of the target dataset. The feasibility of the proposed framework is demonstrated experimentally for the illustrative case of the tumor classification of histopathological images with staining variations. The results show that DCGP-KD provides a promising assistive tool for pathologists in various histopathological analysis tasks. © 2020 IEEE.
引用
收藏
页码:1831 / 1843
页数:12
相关论文
共 50 条
  • [1] Multiple Source-Free Domain Adaptation Network Based on Knowledge Distillation for Machinery Fault Diagnosis
    Yue, Ke
    Li, Jipu
    Chen, Zhuyun
    Huang, Ruyi
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [2] Uncertainty-Guided Source-Free Domain Adaptation
    Roy, Subhankar
    Trapp, Martin
    Pilzer, Andrea
    Kannala, Juho
    Sebe, Nicu
    Ricci, Elisa
    Solin, Arno
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 537 - 555
  • [3] Exploring Relational Knowledge for Source-Free Domain Adaptation
    Ma, You
    Chai, Lin
    Tu, Shi
    Wang, Qingling
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1825 - 1839
  • [4] Source bias reduction for source-free domain adaptation
    Tian, Liang
    Ye, Mao
    Zhou, Lihua
    Wang, Zhenbin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 883 - 893
  • [5] Multi source-free domain adaptation based on pseudo-label knowledge mining
    Zhou, Fang
    Xu, Zun
    Wei, Wei
    Zhang, Lei
    PATTERN RECOGNITION LETTERS, 2025, 187 : 80 - 85
  • [6] Adversarial Source Generation for Source-Free Domain Adaptation
    Cui, Chaoran
    Meng, Fan'an
    Zhang, Chunyun
    Liu, Ziyi
    Zhu, Lei
    Gong, Shuai
    Lin, Xue
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (06) : 4887 - 4898
  • [7] Source-free domain adaptation for image segmentation
    Bateson, Mathilde
    Kervadec, Hoel
    Dolz, Jose
    Lombaert, Herve
    Ben Ayed, Ismail
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [8] Source-Free Progressive Graph Learning for Open-Set Domain Adaptation
    Luo, Yadan
    Wang, Zijian
    Chen, Zhuoxiao
    Huang, Zi
    Baktashmotlagh, Mahsa
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 11240 - 11255
  • [9] Source-Free Active Domain Adaptation via Augmentation-Based Sample Query and Progressive Model Adaptation
    Li, Shuang
    Zhang, Rui
    Gong, Kaixiong
    Xie, Mixue
    Ma, Wenxuan
    Gao, Guangyu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (02) : 2538 - 2550
  • [10] Generation, augmentation, and alignment: a pseudo-source domain based method for source-free domain adaptation
    Yuntao Du
    Haiyang Yang
    Mingcai Chen
    Hongtao Luo
    Juan Jiang
    Yi Xin
    Chongjun Wang
    Machine Learning, 2024, 113 : 3611 - 3631