Vlasov-Maxwell system with physical reasonableness constraints

被引:0
|
作者
Lin H. [1 ]
Liu C.P. [1 ]
机构
[1] State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, PO Box 800-211, Shanghai
来源
Plasma Research Express | 2019年 / 1卷 / 02期
关键词
Non-negative density constraint; Non-negative probability constraint; Space-time contours; Vlasov-Maxwell system;
D O I
10.1088/2516-1067/ab19f1
中图分类号
学科分类号
摘要
Complete mathematical description on plasmas contains not only some coupled partial differential equations (PDEs) reflecting physics laws but also some inequalities reflecting physical reasonableness requirement. The phrase 'physical reasonableness' refers to that solutions should always correspond to non-negative-valued probability distribution function and non-negative-valued particle density. This work displays a universal strict method on the V-Msystem with a constraint inequality f ≥ 0∀ r, p, t. It treats the Vlasov equation as a recurrence formula relating expansion coefficient functions of the power series solution of the equation, and strictly demonstrates that the constraint determines the shape, or geometric characteristics, of space-time contours of the fluid velocity field. Consequently, the constraint inequality makes those PDEs reflecting physics laws to be expressed finally as an ordinary equation of the fluid velocity field with respect to its contour. © 2019 IOP Publishing Ltd.
引用
收藏
相关论文
共 50 条
  • [1] Handling the divergence constraints in Maxwell and Vlasov-Maxwell simulations
    Pinto, Martin Campos
    Mounier, Marie
    Sonnendruecker, Eric
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 403 - 419
  • [2] On the controllability of the relativistic Vlasov-Maxwell system
    Glass, Olivier
    Han-Kwan, Daniel
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (03): : 695 - 740
  • [3] On bifurcation of solutions to the Vlasov-Maxwell system
    Sidorov, NA
    Sinitsyn, AV
    SIBERIAN MATHEMATICAL JOURNAL, 1996, 37 (06) : 1199 - 1211
  • [4] Hamiltonian gyrokinetic Vlasov-Maxwell system
    Burby, J. W.
    Brizard, A. J.
    Morrison, P. J.
    Qin, H.
    PHYSICS LETTERS A, 2015, 379 (36) : 2073 - 2077
  • [5] Steady states of the Vlasov-Maxwell system
    Schaeffer, J
    QUARTERLY OF APPLIED MATHEMATICS, 2005, 63 (04) : 619 - 643
  • [6] Periodic equilibria of the Vlasov-Maxwell system
    Attico, N
    Pegoraro, F
    PHYSICS OF PLASMAS, 1999, 6 (03) : 767 - 770
  • [7] Periodic equilibrium of the Vlasov-Maxwell system
    Attico, N.
    Pegoraro, F.
    Physics of Plasmas, 1999, 6 (03):
  • [8] On the Vlasov-Maxwell equations
    Parsa, Z
    Zadorozhny, V
    2005 IEEE PARTICLE ACCELERATOR CONFERENCE (PAC), VOLS 1-4, 2005, : 3042 - 3044
  • [9] LINEARIZED SYSTEM OF VLASOV-MAXWELL EQUATIONS.
    Aslamazyan, E.I.
    Moscow University computational mathematics and cybernetics, 1984, (02) : 78 - 81
  • [10] ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG MAGNETIC FIELD
    Filbet, Francis
    Xiong, Tao
    Sonnendrucker, Eric
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (02) : 1030 - 1055