Superbandwidth laser pulses in a dispersive medium: Oscillating beyond the Fourier spectrum with unexpected propagation features

被引:0
作者
Neyra E.G. [1 ]
Rossini L.A.B. [1 ]
Videla F. [2 ,3 ]
Rebón L. [4 ,5 ]
Caso P.A.C. [1 ]
机构
[1] Instituto Balseiro, Universidad Nacional de Cuyo and Comisión Nacional de Energía Atómica, CONICET CCT Patagonia Norte., Bariloche, Av. Bustillo 9500, (RN)
[2] Centro de Investigaciones Ópticas (CICBA-CONICET-UNLP), Cno. Parque Centenario y 506, P.O. Box 3, Gonnet
[3] Departamento de Ciencias Básicas, Facultad de Ingeniería UNLP, 1 y 47, La Plata
[4] Departamento de Física, FCE, Universidad Nacional de la Plata, C.C. 67, La Plata
[5] Instituto de Física de la Plata, UNLP-CONICET, Diagonal 113, entre 63 y 64, La Plata
关键词
All Open Access; Green;
D O I
10.1103/PhysRevA.109.053507
中图分类号
学科分类号
摘要
The concept of superbandwidth refers to the fact that a band-limited signal can exhibit, locally, an increase of its bandwidth, i.e., an effective bandwidth greater than that predicted by its Fourier transform. In this work, we study the propagation of superbandwidth laser pulses in a dispersive medium, characterized by the group velocity dispersion. In particular, two important results arise from the analysis of the instantaneous frequency of the pulse obtained through the Wigner function distribution. First, local oscillations of the electric field which are beyond the Fourier spectrum of the incoming pulse can be observed. Second, for a range of values of the pulse synthesis parameters, surprisingly, the dynamics of the instantaneous frequency within certain temporal regions, corresponds to that of a pulse propagating in a medium with a group velocity dispersion of opposite sign. This phenomenon is intrinsic to the special characteristics of the pulse and not to the dispersive properties of the medium. © 2024 American Physical Society.
引用
收藏
相关论文
共 51 条
  • [1] Berry M., Zheludev N., Aharonov Y., Colombo F., Sabadini I., Struppa D. C., Tollaksen J., Rogers E. T., Qin F., Hong M., Roadmap on superoscillations, J. Opt, 21, (2019)
  • [2] Berry M., Popescu S., Evolution of quantum superoscillations and optical superresolution without evanescent waves, J. Phys. A: Math. Gen, 39, (2006)
  • [3] Aharonov Y., Colombo F., Sabadini I., Struppa D., Tollaksen J., The Mathematics of Superoscillations, 247, (2017)
  • [4] Zheludev N. I., Yuan G., Optical superoscillation technologies beyond the diffraction limit, Nat. Rev. Phys, 4, (2022)
  • [5] Cheng K., Li Z., Wu J., Hu Z.-D., Wang J., Super-resolution imaging based on radially polarized beam induced superoscillation using an all-dielectric metasurface, Opt. Express, 30, (2022)
  • [6] Wu Z., Dong F., Zhang S., Yan S., Liang G., Zhang Z., Wen Z., Chen G., Dai L., Chu W., Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light, Acs Photon, 7, (2020)
  • [7] Zhang K., Jiang H., Dong F., Hu H., Song Z., Xu L., Shang Z., Liang G., Zhang Z., Wen Z., Generating ultralong-superoscillation nondiffracting beams with full control of the intensity profile, Phys. Rev. Appl, 19, (2023)
  • [8] Ferreira P. J. S., Kempf A., Superoscillations: Faster than the nyquist rate, IEEE Trans. Signal Process, 54, (2006)
  • [9] Luo Y., Zhan Z., Wang X., Wang J., Creation and preservation of superoscillation in a dielectric optical waveguide, Opt. Lett, 48, (2023)
  • [10] Eliezer Y., Hareli L., Lobachinsky L., Froim S., Bahabad A., Breaking the temporal resolution limit by superoscillating optical beats, Phys. Rev. Lett, 119, (2017)