A Streamlined Attention Mechanism for Image Classification and Fine-Grained Visual Recognition

被引:0
|
作者
Dakshayani Himabindu D. [1 ,2 ]
Praveen Kumar S. [1 ]
机构
[1] Department of CSE, GIT, GITAM University
[2] Department of IT, VNRVJIET
来源
Dakshayani Himabindu, D. (dakshayanihimabindu_d@vnrvjiet.in) | 1600年 / Brno University of Technology卷 / 27期
关键词
Channel Attention; Deep Learning; Fine-Grained Visual Recognition; Image Classification; Spatial Attention; Visual Attention;
D O I
10.13164/mendel.2021.2.059
中图分类号
学科分类号
摘要
In the recent advancements attention mechanism in deep learning had played a vital role in proving better results in tasks under computer vision. There exists multiple kinds of works under attention mechanism which includes under image classification, fine-grained visual recognition, image captioning, video captioning, object detection and recognition tasks. Global and local attention are the two attention based mechanisms which helps in interpreting the attentive partial. Considering this criteria, there exists channel and spatial attention where in channel attention considers the most attentive channel among the produced block of channels and spatial attention considers which region among the space needs to be focused on. We have proposed a streamlined attention block module which helps in enhancing the feature based learning with less number of additional layers i.e., a GAP layer followed by a linear layer with an incorporation of second order pooling (GSoP) after every layer in the utilized encoder. This mechanism has produced better range dependencies by the conducted experimentation. We have experimented our model on CIFAR-10, CIFAR-100 and FGVC-Aircrafts datasets considering finegrained visual recognition. We were successful in achieving state-of-the-result for FGVC-Aircrafts with an accuracy of 97%. © 2021, Brno University of Technology. All rights reserved.
引用
收藏
页码:59 / 67
页数:8
相关论文
共 50 条
  • [21] Convolutional Attention Network with Maximizing Mutual Information for Fine-Grained Image Classification
    Wang, Fenglei
    Zhou, Hao
    Li, Shuohao
    Lei, Jun
    Zhang, Jun
    SYMMETRY-BASEL, 2020, 12 (09):
  • [22] Visual Attention Focusing on Fine-Grained Foreground and Eliminating Background Bias for Pest Image Identification
    Xu, Xinyuan
    Li, Heng
    Gao, Qi
    Zhou, Meixuan
    Meng, Tianyue
    Yin, Liping
    Chai, Xinyu
    IEEE ACCESS, 2024, 12 : 161732 - 161741
  • [23] CMSEA: Compound Model Scaling With Efficient Attention for Fine-Grained Image Classification
    Guang, Jinzheng
    Liang, Jianru
    IEEE ACCESS, 2022, 10 : 18222 - 18232
  • [24] A Fine-Grained Image Classification Model Based on Hybrid Attention and Pyramidal Convolution
    Wang, Sifeng
    Li, Shengxiang
    Li, Anran
    Dong, Zhaoan
    Li, Guangshun
    Yan, Chao
    TSINGHUA SCIENCE AND TECHNOLOGY, 2025, 30 (03): : 1283 - 1293
  • [25] Image Classification With Tailored Fine-Grained Dictionaries
    Shu, Xiangbo
    Tang, Jinhui
    Qi, Guo-Jun
    Li, Zechao
    Jiang, Yu-Gang
    Yan, Shuicheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (02) : 454 - 467
  • [26] Improving Fine-Grained Visual Recognition in Low Data Regimes via Self-boosting Attention Mechanism
    Shu, Yangyang
    Yu, Baosheng
    Xu, Haiming
    Liu, Lingqiao
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 449 - 465
  • [27] Attention-Based Spatiotemporal-Aware Network for Fine-Grained Visual Recognition
    Ren, Yili
    Lu, Ruidong
    Yuan, Guan
    Hao, Dashuai
    Li, Hongjue
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [28] The Pairs Network of Attention model for Fine-grained Classification
    Wang, Gaihua
    Han, Jingwei
    Zhang, Chuanlei
    Yao, Jingxuan
    Zhu, Bolun
    PROCEEDINGS OF THE 2024 6TH INTERNATIONAL CONFERENCE ON BIG DATA ENGINEERING, BDE 2024, 2024, : 39 - 47
  • [29] A survey of recent work on fine-grained image classification techniques
    Wang, Yafei
    Wang, Zepeng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 59 : 210 - 214
  • [30] Enhancing Mixture-of-Experts by Leveraging Attention for Fine-Grained Recognition
    Zhang, Lianbo
    Huang, Shaoli
    Liu, Wei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4409 - 4421