Hierarchical Contrastive Learning Enhanced Heterogeneous Graph Neural Network

被引:3
作者
Liu N. [1 ]
Wang X. [1 ]
Han H. [1 ]
Shi C. [1 ]
机构
[1] Beijing University of Posts and Telecommunications, Beijing Key Lab of Intelligent Telecommunications Software and Multimedia, Beijing
基金
中国国家自然科学基金;
关键词
Contrastive learning; heterogeneous graph neural network; heterogeneous information network;
D O I
10.1109/TKDE.2023.3264691
中图分类号
学科分类号
摘要
Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-view contrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, to further boost the performance of HeCo, two additional methods are designed to generate harder negative samples with high quality. The essence of HeCo is to make positive samples from different views close to each other by cross-view contrast, and learn the factors invariant to two proposed views. However, besides the invariant factors, view-specific factors complementally provide the diverse structure information between different nodes, which also should be contained into the final embeddings. Therefore, we need to further explore each view independently and propose a modified model, called HeCo++. Specifically, HeCo++ conducts hierarchical contrastive learning, including cross-view and intra-view contrasts, which aims to enhance the mining of respective structures. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts. © 1989-2012 IEEE.
引用
收藏
页码:10884 / 10896
页数:12
相关论文
共 50 条
  • [31] Graph Contrastive Learning via Hierarchical Multiview Enhancement for Recommendation
    Liu, Zhi
    Xiang, Hengjing
    Liang, Ruxia
    Xiang, Jinhai
    Wen, Chaodong
    Liu, Sannyuya
    Sun, Jianwen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (03) : 2403 - 2412
  • [32] GoSage: Heterogeneous Graph Neural Network Using Hierarchical Attention for Collusion Fraud Detection
    Ghosh, Soumava
    Anand, Ravi
    Bhowmik, Tanmoy
    Chandrashekhar, Siddhanth
    PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2023, 2023, : 185 - 192
  • [33] Heterogeneous Graph Contrastive Learning With Metapath-Based Augmentations
    Chen, Xiaoru
    Wang, Yingxu
    Fang, Jinyuan
    Meng, Zaiqiao
    Liang, Shangsong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 1003 - 1014
  • [34] Enhancing Heterogeneous Graph Contrastive Learning with Strongly Correlated Subgraphs
    Liu, Yanxi
    Lang, Bo
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT VI, 2024, 14452 : 86 - 102
  • [35] Heterogeneous graph contrastive learning with gradient balance for drug repositioning
    Cui, Hai
    Duan, Meiyu
    Bi, Haijia
    Li, Xiaobo
    Hou, Xiaodi
    Zhang, Yijia
    BRIEFINGS IN BIOINFORMATICS, 2024, 26 (01)
  • [36] Intent-Guided Heterogeneous Graph Contrastive Learning for Recommendation
    Sang, Lei
    Wang, Yu
    Zhang, Yi
    Zhang, Yiwen
    Wu, Xindong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (04) : 1915 - 1929
  • [37] Clustering Enhanced Multiplex Graph Contrastive Representation Learning
    Yuan, Ruiwen
    Tang, Yongqiang
    Wu, Yajing
    Zhang, Wensheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1341 - 1355
  • [38] A dynamic graph attention network with contrastive learning for knowledge graph completion
    Xujiang Li
    Jie Hu
    Jingling Wang
    Tianrui Li
    World Wide Web, 2025, 28 (4)
  • [39] A Graph Neural Network for EEG-Based Emotion Recognition With Contrastive Learning and Generative Adversarial Neural Network Data Augmentation
    Gilakjani, Sareh Soleimani
    Al Osman, Hussein
    IEEE ACCESS, 2024, 12 : 113 - 130
  • [40] ACR-GNN: Adaptive Cluster Reinforcement Graph Neural Network Based on Contrastive Learning
    Jianpeng Hu
    Shengfu Ning
    Meng Yan
    Yifan Cao
    Zhishen Nie
    Ying Lin
    Neural Processing Letters, 2023, 55 : 8215 - 8236