共 46 条
[1]
Sun Y., Han J., Mining heterogeneous information networks: A structural analysis approach, ACM SIGKDD Explorations Newslett., 14, pp. 20-28, (2012)
[2]
Hu W., Et al., Strategies for pre-training graph neural networks, Proc. Int. Conf. Learn. Representations, pp. 327-342, (2020)
[3]
Davis A.P., Et al., The comparative toxicogenomics database: Update 2017, Nucleic Acids Res., 45, pp. D972-D978, (2017)
[4]
Fan S., Et al., Metapath-guided heterogeneous graph neural network for intent recommendation, Proc. ACMSIGKDD Int. Conf. Knowl. Discov. Data Mining, pp. 2478-2486, (2019)
[5]
Fan Y., Hou S., Zhang Y., Ye Y., Abdulhayoglu M., Gotcha-Sly Malware!: Scorpion A metagraph2vec based malware detection system, Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, pp. 253-262, (2018)
[6]
Liu X., Et al., Self-supervised learning: Generative or contrastive, (2020)
[7]
He K., Fan H., Wu Y., Xie S., Girshick R.B., Momentum contrast for unsupervised visual representation learning, Proc. IEEE Conf.Comput. Vis. Pattern Recognit., pp. 9726-9735, (2020)
[8]
Chen T., Kornblith S., Norouzi M., Hinton G.E., A simple framework for contrastive learning of visual representations, Proc. Int.Conf.Mach. Learn., pp. 1597-1607, (2020)
[9]
Velickovic P., Fedus W., Hamilton W.L., Lio P., Bengio Y., Hjelm R.D., Deep graph infomax, Proc. Int. Conf. Learn. Representations, pp. 993-1006, (2019)
[10]
Hassani K., Ahmadi A.H.K., Contrastive multi-view representation learning on graphs, Proc. Int. Conf. Mach. Learn., pp. 4116-4126, (2020)