Effect of aspect ratio on flow-induced vibration of oblate spheroids and implications for energy generation

被引:0
|
作者
Obando, Adrian Cordero [1 ]
Thompson, Mark C. [1 ]
Hourigan, Kerry [1 ]
Zhao, Jisheng [1 ,2 ]
机构
[1] Monash Univ, Fluid Lab Aeronaut & Ind Res FLAIR, Clayton, Vic 3800, Australia
[2] Univ New South Wales, Sch Engn & Technol, Canberra, ACT 2600, Australia
基金
澳大利亚研究理事会;
关键词
Flow-induced vibration; Flow-induced vibration energy harvesting; Bluff bodies; Spheroids; Oblate spheroids; VORTEX-INDUCED VIBRATION; CIRCULAR-CYLINDER; SQUARE CYLINDER; VARYING ANGLES; LOW MASS; SECTION; MODES;
D O I
10.1016/j.jfluidstructs.2024.104137
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study experimentally investigates the influence of aspect ratio on cross-flow flow-induced vibration (FIV) of elastically mounted oblate spheroids. The aspect ratio (epsilon=b/a) of an oblate spheroid, defined as the ratio of the major diameter (b) in the cross-flow direction to the minor diameter (a) in the streamwise direction, was varied between 1.00 and 3.20. The FIV response was characterized over a range of reduced velocity, 3.0 <= U*=U/(f(nw)b)<= 12.0, where U is the free-stream velocity and f(nw) is the natural frequency of the system in quiescent water. The corresponding Reynolds number varied over the range 4730 <= Re <= 20120. It was found that in addition to the vortex-induced vibration (VIV) Mode I and Mode II responses observed for a sphere, on increasing the aspect ratio to epsilon=1.53 and 2.0, a galloping-dominated response, denoted by G-I, was encountered at high reduced velocities. With a further increase in aspect ratio to epsilon=2.50, the body vibration exhibited an additional VIV-like response (V-I) following the sequential appearance of Mode I, Mode II and G-I, with smooth transitions between these modes. In the case of the largest aspect ratio considered in the present study, epsilon=3.20, the spheroid intriguingly exhibited only a pure VIV Mode I before transitioning to a VIV-dominated mode, namely V-II. The largest vibration amplitude observed was 2.17b, occurring at the highest tested reduced velocity of U*=12.0 for epsilon=2.5. Furthermore, the maximum time-averaged power coefficient was observed to be 0.165 for the thinnest oblate spheroid tested, epsilon=3.20, approximately 660% higher than that observed for VIV of a sphere. This shows the relevance of geometry for FIV energy harvesting from oblate spheroids. The findings highlight the distinctive nature of FIV responses of 3D oblate spheroids compared to 2D bluff bodies such as elliptical, D-section, and square cylinders.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Flow-induced transverse vibration of an elliptical cylinder with different aspect ratios
    Vijay, Kushwaha
    Srinil, Narakorn
    Zhu, Hongbo
    Bao, Yan
    Zhou, Dai
    Han, Zhaolong
    OCEAN ENGINEERING, 2020, 214
  • [2] The effect of mass ratio and spring stiffness on flow-induced vibration of a square cylinder at different incidence angles
    Tang, Zhaolie
    Zhou, Benmou
    OCEAN ENGINEERING, 2020, 198
  • [3] In-line flow-induced vibration of rotating elliptical cylinders
    Wu, Yan
    Huang, Yuqi
    Zhao, Jisheng
    JOURNAL OF FLUIDS AND STRUCTURES, 2024, 130
  • [4] Effect of aspect ratio on the unlimited flow-induced vibration of an elliptical cylinder-plate assembly
    Wu, Ying
    Lien, Fue-Sang
    Yee, Eugene
    Chen, Guang
    PHYSICAL REVIEW FLUIDS, 2024, 9 (05):
  • [5] Dynamic response of elliptical cylinders undergoing transverse flow-induced vibration
    Zhao, Jisheng
    Hourigan, Kerry
    Thompson, Mark C.
    JOURNAL OF FLUIDS AND STRUCTURES, 2019, 89 : 123 - 131
  • [6] Analysis on flow-induced vibration of square cylinders with different vibration forms and the flow energy harvesting capacity
    Yu, Mengyao
    Wang, Xiaoyan
    Cai, Jiancheng
    Brazhenko, Volodymyr
    Tan, Jianbo
    Xu, Zisheng
    Shiju, E.
    PHYSICS OF FLUIDS, 2023, 35 (09)
  • [7] Effect of mass ratio on flow-induced vibration of a trapezoidal cylinder at low Reynolds numbers
    Wang, Shubiao
    Cheng, Wenming
    Du, Run
    Wang, Yupu
    Chen, Qingrong
    AIP ADVANCES, 2021, 11 (07)
  • [8] Downstream flat plate as the flow-induced vibration enhancer for energy harvesting
    Maruai, Nurshafinaz Mohd
    Ali, Mohamed Sukri Mat
    Ismail, Mohamad Hafiz
    Salim, Sheikh Ahmad Zaki Shaikh
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (16) : 3555 - 3568
  • [9] Effects of mass ratio and damping ratio on the energy capture efficiency of cylinder flow-induced vibration
    Bai X.
    Han C.
    Sun H.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2020, 41 (09): : 1274 - 1280
  • [10] An experimental investigation of flow-induced vibration of high-side-ratio rectangular cylinders
    Zhao, Jisheng
    Hourigan, Kerry
    Thompson, Mark C.
    JOURNAL OF FLUIDS AND STRUCTURES, 2019, 91