Synthesis of metastable or non-equilibrium phased oxides and their physical properties

被引:0
作者
Kaneko K. [1 ]
Fujita S. [2 ]
机构
[1] Engineering Education Research Center, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto
[2] Photonics and Electronics Science and Engineering Center, Kyoto Univ., Nishikyo-ku, 615-8520, Kyoto
来源
Zairyo/Journal of the Society of Materials Science, Japan | 2019年 / 68卷 / 10期
关键词
Artificial mineral; Corundum; Metastable; Mist CVD; Non-equilibrium; Oxide;
D O I
10.2472/jsms.68.733
中图分类号
学科分类号
摘要
It has been a hard work to synthesize metastable or non-equilibrium compounds because they usually can be obtained under high temperatures and high pressures. However, mist CVD technique has potentials to develop new synthesis routes of them. Metastable or non-equilibrium oxides were fabricated under atmosphere or relatively lower temperatures of 500 ◦C. The key method is a choice of crystal structures of substrates. Crystal structures of thin films fabricated by mist CVD method are strongly influenced by the crystal structure of substrates, because their growth energies are relatively low. Mechanical stress from substrates strongly rock the crystal structures of thin films. 2019 The Society of Materials Science, Japan
引用
收藏
页码:733 / 738
页数:5
相关论文
共 34 条
  • [1] Nagakura S., Inokuchi H., Ezawa H., Iwamura H., Sato F., Kubo R., Dictionary of Physics and Chemistry, (1998)
  • [2] Kawabata A., Ohmori T., Material Engineering of Electrical and Electronics Engineering, (1987)
  • [3] Bednorz J.G., Muller K.A., Possible high Tc superconductivity in the Ba-La-Cu-O system, Zeitschrift Für Physik B Condensed Matter, 64, pp. 189-193, (1986)
  • [4] Uchida S., Takagi H., Kishio K., Kitazawa K., Fueki K., Tanaka S., Superconducting properties of (La1-xSrx)2CuO4, Japanese Journal of Applied Physics, 26, 4, pp. L443-L444, (1987)
  • [5] Wu M.K., Ashburn J.R., Torng C.J., Hor P.H., Meng R.L., Huang Z.J., Wang Y.Q., Chu C.W., Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Physical Review Letter, 58, 9, pp. 908-910, (1987)
  • [6] Gao L., Xue Y.Y., Chen F., Xiong Q., Meng R.L., Ramirez D., Chu C.W., Eggert J.H., Mao H.K., Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m=1, 2, and 3) under quasihydrostatic pressures, Physcal Revew B, 50, pp. 4260-4263, (1994)
  • [7] Nagamatsu J., Nakagawa N., Muranaka T., Zenitani Y., Akimitsu J., Superconductivity at 39 K in magnesium diboride, Nature, 410, pp. 63-64, (2001)
  • [8] Kamihara Y., Watanabe T., Hirano M., Hosono H., Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K, Journal of American Chemical Society, 130, pp. 3296-3297, (2008)
  • [9] Drozdov A.P., Eremets M.I., Troyan I.A., Ksenofontov V., Shylin S.I., Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature, 525, pp. 73-76, (2015)
  • [10] Drozdov A.P., Kong P.P., Minkov V.S., Besedin S.P., Kuzovnikov M.A., Mozaffari S., Balicas L., Balakirev F., Graf D., Prakapenka V.B., Greenberg E., Knyazev D.A., Tkacz M., Eremets M.I., Superconductivity at 250 K in Lanthanum Hydride under High Pressures, (2018)