Activation-free preparation of porous carbon fiber derived from phenolic resin for CO2 absorption

被引:1
|
作者
Jiao, Fuli [1 ]
Miao, Peng [1 ,2 ]
Guo, Peng [1 ,2 ]
Liu, Jie [1 ,2 ]
Wang, Xiaoxu [1 ]
机构
[1] Beijing Univ Chem Technol, Key Lab Carbon Fiber & Funct Polymer, Minist Educ, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Changzhou Inst Adv Mat, Changzhou 213164, Jiangsu, Peoples R China
关键词
Porous carbon fiber; Adsorption selectivity; pyrolysis; CO2; absorption; ADSORPTION CAPACITY; SUPERCRITICAL WATER; NITROGEN; PERFORMANCE; CAPTURE; POLYMER; TEMPERATURE; DIOXIDE; LIQUID;
D O I
10.1016/j.jtice.2024.105621
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Background: It is not uncommon to study the preparation of porous carbon materials for CO2 adsorption, but it is Background: It is not uncommon to study the preparation of porous carbon materials for CO2 adsorption, but it is still a challenge to simultaneously achieve the good mechanical strength, porous structure, and efficient still a challenge to simultaneously achieve the good mechanical strength, porous structure, and efficient adsorption performance of porous carbon fibers. adsorption performance of porous carbon fibers. Methods: Porous carbon fibers with desirable morphology and selective CO2 adsorption were prepared using an Methods: Porous carbon fibers with desirable morphology and selective CO2 adsorption were prepared using an activation-free method. The fibers were prepared through melt spinning of phenolic resin modified with polyactivation-free method. The fibers were prepared through melt spinning of phenolic resin modified with polyvinyl butyral (PVB) and urea, followed by curing treatment, and then the pore structures were adjusted by vinyl butyral (PVB) and urea, followed by curing treatment, and then the pore structures were adjusted by controlling the carbonization temperature. controlling the carbonization temperature. Significant findings: The porous carbon fibers prepared by carbonization at 900 degrees C not only had excellent CO2 Significant findings: The porous carbon fibers prepared by carbonization at 900 degrees C not only had excellent CO2 adsorption (3.48 mmol/g) but also possessed desirable tensile strength (132 MPa). Those carbonized at 700 degrees C adsorption (3.48 mmol/g) but also possessed desirable tensile strength (132 MPa). Those carbonized at 700 degrees C showcased CO2/N2 selectivity of 57 (Ideal adsorption solution theory (IAST), CO2: N2 =15:85), and tensile showcased CO2/N2 selectivity of 57 (Ideal adsorption solution theory (IAST), CO2: N2 =15:85), and tensile strength of 148 MPa, much higher than most fibers using other methods. The study revealed that the adsorption strength of 148 MPa, much higher than most fibers using other methods. The study revealed that the adsorption of CO2 was mainly performed by nitrogen-containing groups and physical function through pores ranging from of CO2 was mainly performed by nitrogen-containing groups and physical function through pores ranging from 0.3 nm to 0.8 nm, and the micropores between 0.3 nm and 0.6 nm were conducive to the selective adsorption of 0.3 nm to 0.8 nm, and the micropores between 0.3 nm and 0.6 nm were conducive to the selective adsorption of CO2/N2. CO2/N2.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Promising Porous Carbon Derived from Celtuce Leaves with Outstanding Supercapacitance and CO2 Capture Performance
    Wang, Rutao
    Wang, Peiyu
    Yan, Xingbin
    Lang, Junwei
    Peng, Chao
    Xue, Qunji
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (11) : 5800 - 5806
  • [22] Adsorptive removal of CO2 on Nitrogen-doped porous carbon derived from polyaniline: Effect of chemical activation
    Qezelsefloo, Elahe
    Khalili, Soodabeh
    Jahanshahi, Mohsen
    Peyravi, Majid
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 239
  • [23] N-doped porous carbon derived from rGO-Incorporated polyphenylenediamine composites for CO2 adsorption and supercapacitors
    Wang, Yuan
    Wang, Hanzhi
    Zhang, Tian C.
    Yuan, Shaojun
    Liang, Bin
    JOURNAL OF POWER SOURCES, 2020, 472
  • [24] Desorption of CO2 from activated carbon fibre-phenolic resin composite by electrothermal effect
    An, Hui
    Feng, Bo
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (01) : 57 - 63
  • [25] Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO2 adsorbents
    Ma, Changdan
    Bai, Jiali
    Hu, Xin
    Jiang, Zhuohan
    Wang, Linlin
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2023, 125 : 533 - 543
  • [26] Superior CO2 uptake on nitrogen doped carbonaceous adsorbents from commercial phenolic resin
    Liu, Shenfang
    Rao, Linli
    Yang, Pupu
    Wang, Xinyi
    Wang, Linlin
    Ma, Rui
    Yue, Limin
    Hu, Xin
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2020, 93 : 109 - 116
  • [27] Agar-Derived Nitrogen-Doped Porous Carbon for CO2 Adsorption
    Xu, Jianguo
    Cui, Hongmin
    Shi, Jinsong
    Yan, Nanfu
    Liu, Yuewei
    Li, Dan
    CHEMISTRYSELECT, 2018, 3 (39): : 10977 - 10982
  • [28] Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies
    Tiwari, Deepak
    Bhunia, Haripada
    Bajpai, Pramod K.
    APPLIED SURFACE SCIENCE, 2018, 439 : 760 - 771
  • [29] CO2 adsorption behavior and kinetics on polyethylenimine modified porous phenolic resin
    Liu, Fenglei
    Chen, Shuixia
    Gao, Yanting
    Xie, Yufang
    JOURNAL OF POROUS MATERIALS, 2017, 24 (05) : 1335 - 1342
  • [30] D-glucose-derived S-doped porous carbon: Sustainable and effective CO2 adsorption
    Xu, Qianyu
    Wang, Junting
    Feng, Jiamin
    Liu, Chen
    Xiao, Qiang
    Demir, Muslum
    Simsek, Utku Bulut
    Kilic, Murat
    Wang, Linlin
    Hu, Xin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 709