Measurement of Magnetic Cavitation Driven by Heat Flow in a Plasma

被引:2
作者
Arran C. [1 ]
Bradford P. [1 ]
Dearling A. [1 ]
Hicks G.S. [2 ,6 ]
Al-Atabi S. [2 ,6 ]
Antonelli L. [3 ]
Ettlinger O.C. [2 ,6 ]
Khan M. [1 ]
Read M.P. [3 ]
Glize K. [4 ]
Notley M. [4 ]
Walsh C.A. [5 ]
Kingham R.J. [6 ]
Najmudin Z. [2 ,6 ]
Ridgers C.P. [1 ]
Woolsey N.C. [1 ]
机构
[1] York Plasma Institute, University of York, York
[2] The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London
[3] First Light Fusion Ltd., Unit 9/10 Oxford Industrial Park, Mead Road, Yarnton, Kidlington
[4] Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot
[5] Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, 94550-9234, CA
[6] Blackett Laboratory, Imperial College London, London
基金
英国工程与自然科学研究理事会;
关键词
Compendex;
D O I
10.1103/PhysRevLett.131.015101
中图分类号
学科分类号
摘要
We describe the direct measurement of the expulsion of a magnetic field from a plasma driven by heat flow. Using a laser to heat a column of gas within an applied magnetic field, we isolate Nernst advection and show how it changes the field over a nanosecond timescale. Reconstruction of the magnetic field map from proton radiographs demonstrates that the field is advected by heat flow in advance of the plasma expansion with a velocity vN=(6±2)×105 m/s. Kinetic and extended magnetohydrodynamic simulations agree well in this regime due to the buildup of a magnetic transport barrier. © 2023 authors. Published by the American Physical Society.
引用
收藏
相关论文
共 41 条
  • [31] Walsh C. A., Chittenden J. P., Hill D. W., Ridgers C., Phys. Plasmas, 27, (2020)
  • [32] Kugland N. L., Ryutov D. D., Plechaty C., Ross J. S., Park H.-S., Rev. Sci. Instrum, 83, (2012)
  • [33] Kasim M. F., Bott A. F. A., Tzeferacos P., Lamb D. Q., Gregori G., Vinko S. M., Phys. Rev. E, 100, (2019)
  • [34] Arran C., Ridgers C. P., Woolsey N. C., Matter Radiat. Extremes, 6, (2021)
  • [35] Bissell J. J., Ridgers C. P., Kingham R. J., Phys. Rev. Lett, 105, (2010)
  • [36] Kingham R. J., Bell A. R., J. Comput. Phys, 194, (2004)
  • [37] Sherlock M., Bissell J. J., Phys. Rev. Lett, 124, (2020)
  • [38] Chang P. Y., Fiksel G., Hohenberger M., Knauer J. P., Betti R., Marshall F. J., Meyerhofer D. D., Seguin F. H., Petrasso R. D., Phys. Rev. Lett, 107, (2011)
  • [39] Walsh C. A., McGlinchey K., Tong J. K., Appelbe B. D., Crilly A., Zhang M. F., Chittenden J. P., Phys. Plasmas, 26, (2019)
  • [40] McBride R. D., Slutz S. A., Phys. Plasmas, 22, (2015)