Utilizing Observed Information for No-Communication Multi-Agent Reinforcement Learning toward Cooperation in Dynamic Environment

被引:1
|
作者
Uwano F. [1 ]
Takadama K. [1 ]
机构
[1] Department of Informatics, The University of Electro-Communications
关键词
dynamic environment; memory management; multi-agent system; reinforcement learning;
D O I
10.9746/jcmsi.12.199
中图分类号
学科分类号
摘要
This paper proposes a multi-agent reinforcement learning method without communication toward dynamic environments, called profit minimizing reinforcement learning with oblivion of memory (PMRL-OM). PMRL-OM is extended from PMRL and defines a memory range that only utilizes the valuable information from the environment. Since agents do not require information observed before an environmental change, the agents utilize the information acquired after a certain iteration, which is performed by the memory range. In addition, PMRL-OM improves the update function for a goal value as a priority of purpose and updates the goal value based on newer information. To evaluate the effectiveness of PMRL-OM, this study compares PMRL-OM with PMRL in five dynamic maze environments, including state changes for two types of cooperation, position changes for two types of cooperation, and a combined case from these four cases. The experimental results revealed that: (a) PMRL-OM was an effective method for cooperation in all five cases of dynamic environments examined in this study; (b) PMRL-OM was more effective than PMRL was in these dynamic environments; and (c) in a memory range of 100 to 500, PMRL-OM performs well. © Taylor & Francis Group, LLC 2019.
引用
收藏
页码:199 / 208
页数:9
相关论文
共 50 条
  • [1] Multi-agent Deep Reinforcement Learning for Task Allocation in Dynamic Environment
    Ben Noureddine, Dhouha
    Gharbi, Atef
    Ben Ahmed, Samir
    ICSOFT: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES, 2017, : 17 - 26
  • [2] Optimistic sequential multi-agent reinforcement learning with motivational communication
    Huang, Anqi
    Wang, Yongli
    Zhou, Xiaoliang
    Zou, Haochen
    Dong, Xu
    Che, Xun
    NEURAL NETWORKS, 2024, 179
  • [3] Learning Communication for Cooperation in Dynamic Agent-Number Environment
    Liu, Weiwei
    Liu, Shanqi
    Cao, Junjie
    Wang, Qi
    Lang, Xiaolei
    Liu, Yong
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (04) : 1846 - 1857
  • [4] Learning of Communication Codes in Multi-Agent Reinforcement Learning Problem
    Kasai, Tatsuya
    Tenmoto, Hiroshi
    Kamiya, Akimoto
    2008 IEEE CONFERENCE ON SOFT COMPUTING IN INDUSTRIAL APPLICATIONS SMCIA/08, 2009, : 1 - +
  • [5] Multi-agent reinforcement learning based on local communication
    Zhang, Wenxu
    Ma, Lei
    Li, Xiaonan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 6): : 15357 - 15366
  • [6] Multi-Agent Deep Reinforcement Learning with Emergent Communication
    Simoes, David
    Lau, Nuno
    Reis, Luis Paulo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [7] Sparse communication in multi-agent deep reinforcement learning
    Han, Shuai
    Dastani, Mehdi
    Wang, Shihan
    NEUROCOMPUTING, 2025, 625
  • [8] Multi-agent reinforcement learning based on local communication
    Wenxu Zhang
    Lei Ma
    Xiaonan Li
    Cluster Computing, 2019, 22 : 15357 - 15366
  • [9] Quantum Multi-Agent Reinforcement Learning for Autonomous Mobility Cooperation
    Park, Soohyun
    Kim, Jae Pyoung
    Park, Chanyoung
    Jung, Soyi
    Kim, Joongheon
    IEEE COMMUNICATIONS MAGAZINE, 2024, 62 (06) : 106 - 112
  • [10] Battlefield Environment Design for Multi-agent Reinforcement Learning
    Do, Seungwon
    Baek, Jaeuk
    Jun, Sungwoo
    Lee, Changeun
    2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 318 - 319