共 59 条
[1]
AIRAKSINEN T., HEIKKOLA E., PENNANEN A., TOIVANEN J., An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation, J. Comput. Phys, 226, pp. 1196-1210, (2007)
[2]
BAYLISS A., GOLDSTEIN C. I., TURKEL E., On accuracy conditions for the numerical computation of waves, J. Comput. Phys, 59, pp. 396-404, (1985)
[3]
BECKERMANN B., REICHEL L., Error estimates and evaluation of matrix functions via the Faber transform, SIAM J. Numer. Anal, 47, pp. 3849-3883, (2009)
[4]
BOLLHOFER M., GROTE M. J., SCHENK O., Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media, SIAM J. Sci. Comput, 31, pp. 3781-3805, (2009)
[5]
COCQUET P.-H., GANDER M. J., How large a shift is needed in the shifted Helmholtz preconditioner for its effective inversion by multigrid?, SIAM J. Sci. Comput, 39, pp. A438-A478, (2017)
[6]
COLEMAN J. P., MYERS N. J., The Faber polynomials for annular sectors, Math. Comp, 64, pp. 181-203, (1995)
[7]
COOLS S., VANROOSE W., Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems, Numer. Linear Algebra Appl, 20, pp. 575-597, (2013)
[8]
COOLS S., VANROOSE W., On the optimality of shifted Laplacian in a class of polynomial preconditioners for the Helmholtz equation, Modern Solvers for Helmholtz Problems, pp. 53-81, (2017)
[9]
CURTISS J. H., Faber polynomials and the Faber series, Amer. Math. Monthly, 78, pp. 577-596, (1971)
[10]
DUBOIS P. F., GREENBAUM A., RODRIGUE G. H., Approximating the inverse of a matrix for use in iterative algorithms on vector processors, Computing, 22, pp. 257-268, (1979)