Hot oxidation and corrosion behaviour of boiler steel fabricated by wire arc additive manufacturing

被引:14
|
作者
Kannan A.R. [1 ]
Prasad C.D. [2 ]
Rajkumar V. [3 ,5 ]
Shanmugam N.S. [4 ]
Lee W. [1 ]
Yoon J. [1 ,6 ]
机构
[1] Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55, Hanyangdaehak-ro, Gyeonggi-do, Ansan
[2] Department of Mechanical Engineering, RV Institute of Technology and Management, Karnataka, Bengaluru
[3] Department of Mechanical Engineering, Coimbatore Institute of Engineering and Technology, Tamil Nadu, Coimbatore
[4] Department of Mechanical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli
[5] Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Tamil Nadu, Coimbatore
[6] AIDICOME Inc., 55, Hanyangdaehak-ro, Sangnok-gu, Ansan
基金
新加坡国家研究基金会;
关键词
Hot corrosion; Microstructure; SS308L; Stainless steel; Welding; Wire arc additive manufacturing;
D O I
10.1016/j.matchar.2023.113113
中图分类号
学科分类号
摘要
Boiler Steels undergo severe degradation in corrosion resistance due to oxide scale formation at elevated temperatures. In this study, the comparative hot oxidation and hot corrosion resistance of wire arc additive manufactured SS 308L (WAAM 308L) was examined in hot air and Na2SO4–60% V2O5 molten salt environments at 700 °C. The corrosion resistance at elevated temperature was analysed using thermo-kinetic curves, corrosion products, and morphology of the oxides. The hot oxidation kinetics revealed that WAAM processed SS 308L specimens has excellent resistance and the weight gain reached 3.10 mg/cm2 with thinner oxide scale formation. Hot corrosion kinetics of WAAM processed SS 308L specimens highlighted the higher weight gain (37.0 mg/cm2) in molten salt environment and is attributed to the acceleration of oxide scale formation by the salts at elevated temperatures. Also, the development of Ni3V2O8 and Fe2O3 along with the depletion of Cr2O3 significantly influenced the corrosion resistance at elevated temperatures. The findings of this study reveal the potential of WAAM to produce customized parts for high-temperature applications. © 2023 Elsevier Inc.
引用
收藏
相关论文
共 50 条
  • [21] Studies on Super Duplex Stainless Steel Manufactured by Wire Arc Additive Manufacturing
    A. Rajesh Kannan
    N. Siva Shanmugam
    K. Devendranath Ramkumar
    V. Rajkumar
    Transactions of the Indian Institute of Metals, 2021, 74 : 1673 - 1681
  • [22] Studies on Super Duplex Stainless Steel Manufactured by Wire Arc Additive Manufacturing
    Kannan, A. Rajesh
    Shanmugam, N. Siva
    Ramkumar, K. Devendranath
    Rajkumar, V
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2021, 74 (07) : 1673 - 1681
  • [23] Microstructural, Mechanical, and Corrosion Performance of Components Fabricated through Wire Arc Additive Manufacturing Process
    Sudarsan, Coomar
    Katiyar, Bhupesh Singh
    Behera, Dibya Ranjan
    Rakshit, Rahul
    Rajak, Bijoy
    Perka, Ashok Kumar
    Arora, Kanwer Singh
    Mandal, Sumantra
    Panda, Sushanta Kumar
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (17) : 9163 - 9177
  • [24] Microstructure and corrosion resistance properties of 5356 aluminum alloy fabricated by wire and arc additive manufacturing
    Liang, Jingheng
    Zheng, Ziqin
    Xu, Zhibao
    Wang, Shuai
    Han, Han
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2025, 53 (02): : 115 - 124
  • [25] Hot Wire Assisted Arc Additive Manufacturing of Carbon Steel Parts: Study on Microstructure and Mechanical Properties
    Li, Yitong
    Yin, Ziqiang
    Sun, Xiuhuai
    Wang, Shouren
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [26] Hot forging wire and arc additive manufacturing (HF-WAAM)
    Duarte, Valdemar R.
    Rodrigues, Tiago A.
    Schell, N.
    Miranda, R. M.
    Oliveira, J. P.
    Santos, Telmo G.
    ADDITIVE MANUFACTURING, 2020, 35
  • [27] High temperature oxidation and erosion-corrosion behaviour of wire arc sprayed Ni-Cr coating on boiler steel
    Kumar, Santosh
    Kumar, Manoj
    Handa, Amit
    MATERIALS RESEARCH EXPRESS, 2019, 6 (12)
  • [28] Examination of microstructure properties of AISI 316L stainless steel fabricated by wire arc additive manufacturing
    Vinoth, V.
    Sathiyamurthy, S.
    Natarajan, U.
    Venkatkumar, D.
    Prabhakaran, J.
    Prakash, K. Sanjeevi
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 702 - 706
  • [29] Material properties and mechanical behaviour of functionally graded steel produced by wire-arc additive manufacturing
    Tenuta, E.
    Nycz, A.
    Noakes, M.
    Simunovic, S.
    Piro, M. H. A.
    ADDITIVE MANUFACTURING, 2021, 46
  • [30] Bending fatigue properties of structural steel fabricated through wire arc additive manufacturing (WAAM)
    Ayan, Yusuf
    Kahraman, Nizamettin
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2022, 35