Safety reinforcement learning control via transfer learning

被引:1
|
作者
Zhang, Quanqi [1 ]
Wu, Chengwei [1 ]
Tian, Haoyu [1 ]
Gao, Yabin [1 ]
Yao, Weiran [1 ]
Wu, Ligang [1 ]
机构
[1] Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Reinforcement learning control; Safety; Stability; Transfer learning; LYAPUNOV FUNCTIONS;
D O I
10.1016/j.automatica.2024.111714
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reinforcement learning (RL) has emerged as a promising approach for modern control systems. However, its success in real-world applications has been limited due to the lack of safety guarantees. To address this issue, the authors present a novel transfer learning framework that facilitates policy training in a non-dangerous environment, followed by transfer of the trained policy to the original dangerous environment. The transferred policy is theoretically proven to stabilize the original system while maintaining safety. Additionally, we propose an uncertainty learning algorithm incorporated in RL that overcomes natural data cascading and data evolution problems in RL to enhance learning accuracy. The transfer learning framework avoids trial-and-error in unsafe environments, ensuring not only after-learning safety but, more importantly, addressing the challenging problem of safe exploration during learning. Simulation results demonstrate the promise of the transfer learning framework for RL safety control on the task of vehicle lateral stability control with safety constraints. (c) 2024 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Transfer and Reinforcement Learning Based Production Control
    Steinbacher L.
    Pering E.
    Freitag M.
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2022, 117 (09): : 609 - 613
  • [2] Transfer Learning Applied to Reinforcement Learning-Based HVAC Control
    Lissa P.
    Schukat M.
    Barrett E.
    SN Computer Science, 2020, 1 (3)
  • [3] Safe Reinforcement Learning via Episodic Control
    Li, Zhuo
    Zhu, Derui
    Grossklags, Jens
    IEEE ACCESS, 2025, 13 : 35270 - 35280
  • [4] Transfer Learning in Deep Reinforcement Learning
    Islam, Tariqul
    Abid, Dm. Mehedi Hasan
    Rahman, Tanvir
    Zaman, Zahura
    Mia, Kausar
    Hossain, Ramim
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL 1, 2023, 447 : 145 - 153
  • [5] Transfer Learning via Learning to Transfer
    Wei, Ying
    Zhang, Yu
    Huang, Junzhou
    Yang, Qiang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [6] Transfer Learning for Reinforcement Learning Domains: A Survey
    Taylor, Matthew E.
    Stone, Peter
    JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 1633 - 1685
  • [7] Transfer Learning in Deep Reinforcement Learning: A Survey
    Zhu, Zhuangdi
    Lin, Kaixiang
    Jain, Anil K.
    Zhou, Jiayu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (11) : 13344 - 13362
  • [8] Safe Transfer-Reinforcement-Learning-Based Optimal Control of Nonlinear Systems
    Wang, Yujia
    Xiao, Ming
    Wu, Zhe
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (12) : 7272 - 7284
  • [9] Lateral Transfer Learning for Multiagent Reinforcement Learning
    Shi, Haobin
    Li, Jingchen
    Mao, Jiahui
    Hwang, Kao-Shing
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (03) : 1699 - 1711
  • [10] Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning
    Hua, Jiang
    Zeng, Liangcai
    Li, Gongfa
    Ju, Zhaojie
    SENSORS, 2021, 21 (04) : 1 - 21