Simulation-driven machine learning for robotics and automation Simulations-basiertes Maschinelles Lernen in der Robotik und Automatisierungstechnik

被引:0
|
作者
El-Shamouty M. [1 ]
Kleeberger K. [1 ]
Lämmle A. [1 ]
Huber M. [1 ,2 ,3 ]
机构
[1] Fraunhofer IPA, Nobelstr. 12, Stuttgart
[2] Center for Cyber Cognitive Intelligence (CCI), Fraunhofer IPA, Nobelstr. 12, Stuttgart
[3] Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, Stuttgart
来源
Technisches Messen | 2019年
关键词
artificial neural networks; automation; machine learning; Mass personalization; reinforcement learning; robotics; simulation;
D O I
10.1515/teme-2019-0072
中图分类号
学科分类号
摘要
Mass personalization- A megatrend in industrial manufacturing and production-requires fast adaptations of robotics and automation solutions to continually decreasing lot sizes. In this paper, the challenges of applying robot-based automation in a highly individualized production are highlighted. To face these challenges, a framework is proposed that combines latest machine learning (ML) techniques, like deep learning, with high-end physics simulation environments. ML is used for programming and parameterizing machines for a given production task with minimal human intervention. If the simulation environment realistically captures physical properties like forces or elasticity of the real world, it provides a high-quality data source for ML. In doing so, new tasks are mastered in simulation faster than in real-time, while at the same time existing tasks are executed. The functionality of the simulation-driven ML framework is demonstrated on an industrial use case. © 2019 Walter de Gruyter GmbH, Berlin/Boston 2019.
引用
收藏
页码:673 / 684
页数:11
相关论文
共 4 条
  • [1] Simulation-driven machine learning for robotics and automation
    El-Shamouty, Mohamed
    Kleeberger, Kilian
    Laemmle, Arik
    Huber, Marco
    TM-TECHNISCHES MESSEN, 2019, 86 (11) : 673 - 684
  • [2] Künstliche Intelligenz und maschinelles Lernen in der onkologischen BildgebungArtificial intelligence and machine learning in oncologic imaging
    Jens Kleesiek
    Jacob M. Murray
    Georgios Kaissis
    Rickmer Braren
    Der Onkologe, 2020, 26 (1): : 60 - 65
  • [3] Künstliche Intelligenz und maschinelles Lernen in der onkologischen BildgebungArtificial intelligence and machine learning in oncologic imaging
    Jens Kleesiek
    Jacob M. Murray
    Christian Strack
    Sebastian Prinz
    Georgios Kaissis
    Rickmer Braren
    Der Pathologe, 2020, 41 (6): : 649 - 658
  • [4] Künstliche Intelligenz und maschinelles Lernen in der onkologischen BildgebungArtificial intelligence and machine learning in oncologic imaging
    J. Kleesiek
    J. M. Murray
    C. Strack
    S. Prinz
    G. Kaissis
    R. Braren
    best practice onkologie, 2021, 16 (4) : 176 - 185