Heuristic hidden Markov model for fuzzy time series forecasting

被引:0
|
作者
Salawudeen A.T. [1 ]
Nyabvo P.J. [1 ]
Suleiman H.U. [2 ]
Momoh I.S. [1 ]
Akut E.K. [1 ]
机构
[1] Faculty of Engineering, University of Jos
[2] Faculty of Engineering, Nile University of Nigeria
关键词
Baum Welch algorithm; BWA; FTS; Fuzzy time series; GA; Hidden Markov model; HMM; Monte Carlo simulation;
D O I
10.1504/IJISTA.2021.119030
中图分类号
学科分类号
摘要
This paper presents FTS forecasting model using hidden Markov model (HMM) and genetic algorithm (GA). Over the years, traditional methods such as Baum Welch algorithm (BWA) have been employed significantly for HMM parameter estimation. This method does not usually capture effectively the fuzziness in natural data leading the HMM algorithm into local minima. To address this limitation, we formulate an objective function representing the HMM parameter estimation problem and optimise the formulated objective function using GA. The insufficiency in data associated with the HMM model, was addressed using smoothing technique. Monte Carlo simulation was employed at the end of the forecast to ensure stability and efficiency of the forecasting outcome of the developed approach. The model was tested on daily average temperature and cloud density of Taipei, Taiwan and internet traffic data of Ahmadu Bello University (ABU). In verifying the performance of the developed using the Taiwan temperature and ABU internet traffic datasets, we employed the mean square error (MSE) and average forecasting error percentage (AFEP) as performance metric. Experiment results showed that the new forecasting method has an improved forecasting accuracy compared to existing methods. Copyright © 2021 Inderscience Enterprises Ltd.
引用
收藏
页码:146 / 166
页数:20
相关论文
共 50 条
  • [21] A combination of hidden Markov model and fuzzy model for stock market forecasting
    Hassan, Md Rafiul
    NEUROCOMPUTING, 2009, 72 (16-18) : 3439 - 3446
  • [22] HEURISTIC BIVARIATE FORECASTING MODEL OF MULTI-ATTRIBUTE FUZZY TIME SERIES BASED ON FUZZY CLUSTERING
    Nan, Guofang
    Zhou, Shuaiyin
    Kou, Jisong
    Li, Minqiang
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2012, 11 (01) : 167 - 195
  • [23] Adaptive GA-based AR-Hidden Markov Model for Time Series Forecasting
    Toriyama, Naoki
    Ono, Keiko
    Orito, Yukiko
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 665 - 672
  • [24] A hidden Markov model for the analysis of cylindrical time series
    Lagona, Francesco
    Picone, Marco
    Maruotti, Antonello
    ENVIRONMETRICS, 2015, 26 (08) : 534 - 544
  • [25] A vector forecasting model for fuzzy time series
    Li, Sheng-Tun
    Kuo, Shu-Ching
    Cheng, Yi-Chung
    Chen, Chih-Chuan
    APPLIED SOFT COMPUTING, 2011, 11 (03) : 3125 - 3134
  • [26] A Hybrid Model of Fuzzy time Series for Forecasting
    Wang Jue
    Qiao JianZhong
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 2694 - 2698
  • [27] A deterministic forecasting model for fuzzy time series
    Li, ST
    Cheng, YC
    Proceedings of the IASTED International Conference on Computational Intelligence, 2005, : 25 - 30
  • [28] A Hybrid Fuzzy Time Series Model for Forecasting
    Hassan, Saima
    Jaafar, Jafreezal
    Samir, Brahim B.
    Jilani, Tahseen A.
    ENGINEERING LETTERS, 2012, 20 (01) : 88 - 93
  • [29] A Higher order Markov model for time series forecasting
    Dao Xuan Ky
    Luc Tri Tuyen
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2018, 57 (03): : 1 - 18
  • [30] A New Forecasting Model of Fuzzy Time Series
    Wang Hongxu
    Guo Jianchun
    Feng Hao
    Jin Hailong
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING III, 2014, 678 : 59 - +